###
Introduction To Periodic Motion L-1
###
Introduction to Periodic Motion
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-061-0034.0.jpg)
###
Introduction To Periodic Motion L-1
###
Oscillations and Waves
- Oscillatory motion and wave motion. - Oscillatory motion:- Periodic motion. - Periodic motion: Is a motion that repeats itself.
###
Introduction To Periodic Motion L-1
###
Periodic Motion
- Periodic motion: Something is a motion that repeats itself. - $x(t)=R \cos \theta(t)$ - $y(t)=R \sin \theta(t)$
###
Introduction To Periodic Motion L-1
###
Periodic Motion
- If a motion repeats itself after time T, motion is periodic with time periodic T.
###
Introduction To Periodic Motion L-1
###
Examples of Periodic Motion
- (1) Earths rotation on its axis T= 24 hrs. - (2) Moon going around the earth T $\simeq$ 29 days. - (3) The earth going around the sun T $\simeq$ 365 days/ 1 years.
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-09.jpg)
###
Introduction To Periodic Motion L-1
###
Examples of Periodic Motion
- Time period $=T$ - Frequency $f=\frac{1}{T}$ - Angular frequency $\omega=2 \pi f=\frac{2 \pi}{T}$ - $ T=\text { seconds } $ - $f= \mathrm{Hz} \text { (Hertz) } $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-08.jpg)
###
Introduction To Periodic Motion L-1
###
Circular Motion
- Motion of particle in a circle. - Specialize to motion when the speed of the particle is constant / uniform. - Time period **$T=\frac{2 \pi R}{v}$** - $f =\frac{1}{T} =\frac{V}{2 \pi R}=\left(\frac{\omega}{2 \pi}\right)$ - Angular speed $=\frac{2 \pi}{T}=2 \pi \mathrm{f}$
###
Introduction To Periodic Motion L-1
###
Circular Motion
- $\theta=\omega t, \quad \omega=\frac{v}{R}$ - $ x(t)=R \cos \omega t$ - $y(t)=R \sin \omega t$
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $ x(t)=R \cos \omega t$ - $y(t)=R \sin \omega t$ - Simple harmonic motion. - It contains a $ cos \omega t$ / $ sin \omega t$ time-dependance. - Periodic motion and their representation on displacement verses time graph.
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- Plot the height of the ball y(t) versus the time T. - The motion is periodic.
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $y(t)=h-\frac{1}{2} g t^2 $ - $y=0-t=\sqrt{\frac{2 h}{2}}$ - $T=2 t=2 \sqrt{\frac{2 h}{g}}$
###
Introduction To Periodic Motion L-1
###
Periodic Motion
- x(t) $\rightarrow$ Periodic. - Changing periodically with time period T. - x(t) is periodic. - Velocity = $(\frac{dx}{dt})$ is also periodic.
###
Introduction To Periodic Motion L-1
###
Periodic Motion
- x(t) is periodic. - v(t) is periodic. - a(t) is periodic. - $\int_0^{t_1} a(t) d t=-2 v$ - x(t): displacement - v(t) = $\frac{dx}{dt}$ - a(t)=$(\frac{dv}{dt}) = \frac{d^2x}{dt^2}$
###
Introduction To Periodic Motion L-1
###
Periodic Motion
- A ball dropped from height 'h' and bouncing without losing any energy. - v(t)=$\frac{dy{(t)}}{dt}$ - a(t)=$\frac{dv(t)}{dt}=\frac{d^2y}{dt^2}$ - $ \int_{t_1}^{t_2} a(t) d t=2 v_0 =2 \sqrt{2 g h}$
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $x(t)=R \cos \omega t \quad y(t)=R \sin \omega t$ - $v(t) =\frac{d x(y)}{d t} =d R \sin w L$ - $ a(t) =\frac{d v}{d t} =-\omega^2 R \cos u t =-\omega^2 x(t)$
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- x(t)= $A cos \omega t + B sin \omega t$ - v(t) = $\frac{dx}{dt}= -\omega a\sin\omega t + \omega b\cos \omega t$ - a(t)= $\frac{dv}{dt}= -\omega^2 A\cos\omega t-\omega^2 B\ sin \omega t = -\omega^2x (t)$ | x- axis | y-axis | | -------- | -------- | |$ x(t)=R \cos \omega t$ |$y(t) =R \sin \omega t$ | |$v(t) =\frac{d x}{d t}=-\omega R \sin \omega t$| $v(t) =\frac{d y}{d t} =\omega R \cos \omega t$ | |$a(t) =\frac{d v}{d t}=\frac{d^2 x}{d t^2}=-\omega^2 x$|$a(t)=\frac{d v}{d t}=\frac{d^2 y}{d t^2}=-\omega^2y$ |
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-16.jpg)
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $\dot{x}=\frac{d^2x}{dt^2}= -C_x (C> 0)$ - $\dot{x(t)}$ = $ A_1 cos \sqrt{c}\ t + B_1 sin \sqrt{c}$ t - $\dot{x(t)}$ = $ A cos \sqrt{c}\ t + B_1 sin \sqrt{c}$ t
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- A Function is given as: - f(t) = $\cos 2\pi t + cos 3\pi t$ - Plot the function and find its period. - ${cos}2 \pi t \rightarrow$ has a period of T=1 - $\left.\operatorname{Cos}(2 \pi t) \quad\right|_{t=0}=1$ - Next it becomes 1 is at t=1. - $\cos 2\pi= 1$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-18.jpg)
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $\left.\cos 3 \pi\right|_{t=0}=1$ - $\left.\cos 3 \pi t\right|_{t=\frac{2}{3}}=\cos 2 \pi = 1$
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $f(t)= \cos 2 \pi t+\cos 3 \pi t= \cos \left(\left(\frac{2 \pi+3 \pi}{2} t\right)+\frac{(3 \pi-2 \pi)}{2} t\right) cos 3\pi t+\cos \left(\frac{2 \pi+3 \pi}{2} t-\frac{(3 \pi-2 \pi)}{2} t\right)cos 2\pi t$ - $=\cos \left(\frac{5 \pi}{2} t+\frac{\pi}{2} t\right)+\cos \left(\frac{5 \pi}{2} t-\frac{\pi}{2} t\right)$ - = $f(t)=2 \cos \frac{5 \pi}{2} t \cos \frac{\pi}{2} t$ - Now, - $ f(0)=2 \times 1 \times 1=2$ - $f(T)=2 \cos \frac{5 \pi T}{2} \cos \frac{\pi}{2} T\$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-20.jpg)
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $f(T) =2 \operatorname{Cos} \frac{5 \pi}{2} T \cdot \operatorname{Cos} \frac{\pi}{2} T$ - If we put $T =2$, - $f(2) =2 \cos 5 \pi \cdot \cos \pi$ = 2(-1)(-1) =2 - Time period = 2
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-21.jpg)
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $m=$ mass of the particle, $k=$ constant - $V(x) =\frac{1}{2} m k x \quad x\geq 0$ - $\quad =-\frac{1}{2} m k x \quad x\leqslant 0$ - V(x) =$\frac{1}{2} m k|x|$ - A particle with energy E is going to perform a periodic motion $E=\frac{1}{2} m v_0^2 \Rightarrow v_0$ is the speed when v(x)=0 - By Energy conservation $E=\frac{1}{2} m v^2+\frac{1}{2} m k|x|$
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $\frac{1}{2} m v_0^2 =\frac{1}{2} m v^2+\frac{1}{2} m k|x|$ - $v^2 =v_0^2-k|x|$ - $ v(x) =\sqrt{v_0^2-k|x|}$ - $d t =\frac{d x}{V-(x)}=\frac{d x}{\sqrt{v_0^2-k|x|}}$ - $v=0 \Rightarrow \frac{1}{2} m v_0^2=\frac{1}{2} m k|x|$ - $|x|=\frac{v_0^2}{k}$ - $\frac{T}{2}=\int_{-v_0^2 / k}^{v_i^2 / k} d t=\int_{-v_i^2 / k}^0 \frac{d x}{\sqrt{v_0^2+k x}}+\int_0^{\frac{v_0^2}{k}} \frac{d x}{\sqrt{v_0^2-k x}}$
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $\frac{T}{2}=\int_{-\frac{v_0^2}{k}}^0 \frac{d x}{\sqrt{v_0^2+k x}}+\int_0^{v_0^2 / k} \frac{d x}{\sqrt{v_0^2-k x}}$ - y= - x - So, x= - y $\Rightarrow$ dx= -dy - $\frac{T}{2}=-\int_{+v_0^2 / k}^0 \frac{d y}{\sqrt{v_0^2-k y}}+\int_0^{v_0^2 / k} \frac{d x}{\sqrt{v_0^2-k x}}$ - = $+\int_0^{v_0^2 / k} \frac{d y}{\sqrt{v_0^2-k y}}+\int_0^{v_0^2 / k} \frac{d y}{\sqrt{v_0^2-k y}}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-24.jpg)
###
Introduction To Periodic Motion L-1
###
Simple Harmonic Motion
- $\frac{T}{2}=2 \cdot \int_0^{v_0^2 / k} \frac{d y}{\sqrt{v_0^2-k y}}$ - $y=\frac{v_0^2}{k} \sin ^2 \theta \quad d y=\frac{2 v_0^2}{k} \sin \theta \cos \theta\ d \theta$ - $\frac{T}{2}=2 \int_0^{\pi / 2} \frac{2 v_0^2 / k \sin \theta \cos \theta d \theta}{v_0 \cos \theta}$ - $=4 \frac{v_0}{k} \cdot \int_0^{\pi / 2} \sin \theta d \theta=\frac{4 v_0}{k}$ - $T=\frac{8 v_0}{k}$ and frequency =$\frac{k}{8 nv^2}$.
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-01-introduction-to-periodic-motion-l-1_6-2wzwdbova3e-25.jpg)
###
Introduction To Periodic Motion L-1
###
Thank You