Equipartiton Of Energy L-2
Equipartition of Energy
→ \rightarrow → → \rightarrow → Equipartition of Energy → \rightarrow → Recap → \rightarrow → Equipartition of Energy
Equipartiton Of Energy L-2
Recap
P = 1 3 m N L 3 v r m s 2 P = \frac{1}{3} \frac{m N}{L^3} v_{r m s}^2 P = 3 1 L 3 m N v r m s 2 v r m s 2 v_{r m s}^2 v r m s 2
P = 1 3 ρ v r m s 2 P = \frac{1}{3} \rho v_{r m s}^2 P = 3 1 ρ v r m s 2
P V = 1 3 M v r m s 2 = 1 3 m N v r m s 2 P V=\frac{1}{3} M v_{r m s}^2=\frac{1}{3} m N v_{r_{m s}}^2 P V = 3 1 M v r m s 2 = 3 1 m N v r m s 2 = 1 N ∑ i = 1 ( v i x ) 2 =\frac{1}{N} \sum_{i=1}\left(v_i^x\right)^2 = N 1 ∑ i = 1 ( v i x ) 2 + ( v i y ) 2 +\left(v_i^y \right)^2 + ( v i y ) 2
How do you relate it temp.
Ideal gas eqn, of state PV=nRT
PV=N k B T Nk_BT N k B T
→ \rightarrow → Equipartition of Energy → \rightarrow → Recap → \rightarrow → Equipartition of Energy → \rightarrow → Equipartition of Energy
Equipartiton Of Energy L-2
Equipartition of Energy
1 2 m v rms 2 = 3 2 k B T \frac{1}{2} m v_{\text {rms }}^2=\frac{3}{2} k_B T 2 1 m v rms 2 = 2 3 k B T 1 2 m N v rms 2 = 3 2 N k B T \frac{1}{2} m N v_{\text {rms }}^2=\frac{3}{2} N k_B T 2 1 m N v rms 2 = 2 3 N k B T
P V = 2 3 E translational P V=\frac{2}{3} E_{\text {translational}} P V = 3 2 E translational
E p = p 2 2 m E_p=\frac{p^2}{2 m} E p = 2 m p 2
Equipartition of Energy → \rightarrow → Recap → \rightarrow → Equipartition of Energy → \rightarrow → Equipartition of Energy → \rightarrow → Harmonic Oscillators
Equipartiton Of Energy L-2
Equipartition of Energy
1 2 m ( 3 v x 2 ) = 3 2 k B T \frac{1}{2} m\left(3 v_x^2\right)=\frac{3}{2} k_BT 2 1 m ( 3 v x 2 ) = 2 3 k B T
1 2 m v x 2 = 1 2 k B T \frac{1}{2} m v_x^2=\frac{1}{2} k_BT 2 1 m v x 2 = 2 1 k B T
1 2 N m v 2 2 = N 2 K i \frac{1}{2} N{m v_2^2} =\frac{N}{2} K_i 2 1 N m v 2 2 = 2 N K i
1 2 m v y 2 = 1 2 k B T \frac{1}{2} m v_y^2=\frac{1}{2} k_BT 2 1 m v y 2 = 2 1 k B T
v 2 = v x 2 + v y 2 + v z 2 = 3 v x 2 v^2 =v_x^2+v_y^2+v_z^2 =3 v_x^2 v 2 = v x 2 + v y 2 + v z 2 = 3 v x 2
Three components of velocity
E = 1 2 k B T \frac{1}{2}k_BT 2 1 k B T
Recap → \rightarrow → Equipartition of Energy → \rightarrow → Equipartition of Energy → \rightarrow → Harmonic Oscillators → \rightarrow → Harmonic Oscillators
Equipartiton Of Energy L-2
Harmonic Oscillators
N ⟶ 3 dimensions ⟶ v i x , v i y , v i z N \longrightarrow 3 \text { dimensions } \longrightarrow v_i^x, v_i^y, v_i^z N ⟶ 3 dimensions ⟶ v i x , v i y , v i z
1 2 N k B T + 1 2 N k B T + 1 2 N k B T = 3 2 N k B T \frac{1}{2} N k_B T+\frac{1}{2} N k_B T+\frac{1}{2} N k_B T=\frac{3}{2} N k_B T 2 1 N k B T + 2 1 N k B T + 2 1 N k B T = 2 3 N k B T
E = p 2 2 x + 1 2 k x 2 E=\frac{p^2}{2 x}+\frac{1}{2} k x^2 E = 2 x p 2 + 2 1 k x 2
⟨ E ⟩ = k B T \langle E\rangle=k_B T ⟨ E ⟩ = k B T
⟨ E ⟩ = 3 N k B T \langle E\rangle=3Nk_B T ⟨ E ⟩ = 3 N k B T
f = − k x f = - kx f = − k x
V = 1 2 k x 2 V =\frac{1}{2}kx^2 V = 2 1 k x 2
Equipartition of Energy → \rightarrow → Equipartition of Energy → \rightarrow → Harmonic Oscillators → \rightarrow → Harmonic Oscillators → \rightarrow → Rotational Kinetic Energy
Equipartiton Of Energy L-2
Harmonic Oscillators
C V = d E d T C_V = \frac{d E}{d T} C V = d T d E
C p = L t Δ T → 0 Δ E Δ T C_p=Lt_{\Delta T \rightarrow 0} \frac{\Delta E}{\Delta T} C p = L t Δ T → 0 Δ T Δ E
For ideal Gas
C p − C r = R C_p-C_r=R C p − C r = R
C V = 3 2 N k B C_V=\frac{3}{2} N k_{ B} C V = 2 3 N k B
Harmonic Oscillator :
C V = 3 N k B C_V = 3 N k_B C V = 3 N k B
Ideal Gas : Monoatomic
Equipartition of Energy → \rightarrow → Harmonic Oscillators → \rightarrow → Harmonic Oscillators → \rightarrow → Rotational Kinetic Energy → \rightarrow → Polyatomic
Equipartiton Of Energy L-2
Rotational Kinetic Energy
Harmonic Oscillators → \rightarrow → Harmonic Oscillators → \rightarrow → Rotational Kinetic Energy → \rightarrow → Polyatomic → \rightarrow → Pressure
Equipartiton Of Energy L-2
Polyatomic
Rigid body
6 degrees of freedom
3 → 3 \rightarrow 3 → translational
3 → 3 \rightarrow 3 → rotational
Rigid body approximation
10 23 10^{23} 1 0 23 particles
→ N 6 1 2 k T = 3 N K T \rightarrow N 6\frac{1}{2}kT = 3NKT → N 6 2 1 k T = 3 N K T
Harmonic Oscillators → \rightarrow → Rotational Kinetic Energy → \rightarrow → Polyatomic → \rightarrow → Pressure → \rightarrow → Thermal Equation
Equipartiton Of Energy L-2
Pressure
( 3 k T + f 2 k T ) N \left(3 k T+\frac{f}{2} k T\right) N ( 3 k T + 2 f k T ) N
P = 1 3 m N v 2 P=\frac{1}{3} m N v^2 P = 3 1 m N v 2
v 2 ∝ k B T v^2 \propto k_{B } T v 2 ∝ k B T
T ∝ f ( 1 2 m v 2 ) T \propto f\left(\frac{1}{2} m v^2\right) T ∝ f ( 2 1 m v 2 )
P V = 1 3 m N v 2 P V=\frac{1}{3} m N v^2 P V = 3 1 m N v 2
P 0 V = 1 3 m N v 0 2 P_0 V=\frac{1}{3} m N v_0^2 P 0 V = 3 1 m N v 0 2
P P 0 = v 2 v 0 2 \frac{P}{P_0}=\frac{v^2}{v_0^2} P 0 P = v 0 2 v 2
v 2 = ( P P 0 ) v 0 2 v^2=\left(\frac{P}{P_0}\right) v_0^2 v 2 = ( P 0 P ) v 0 2
Rotational Kinetic Energy → \rightarrow → Polyatomic → \rightarrow → Pressure → \rightarrow → Thermal Equation → \rightarrow → Boyle's Law
Equipartiton Of Energy L-2
Thermal Equation
v 2 = ( v 0 2 T 0 ) T v^2=\left(\frac{v_0^2}{T_0}\right) T v 2 = ( T 0 v 0 2 ) T
v 2 ∝ T v^2 \propto T v 2 ∝ T
1 2 m v 2 = a k B T \frac{1}{2} m v^2 =a k_B T 2 1 m v 2 = a k B T , Where a is any number
Mix two Gases
Thermal equation
1 2 m 1 v 1 2 = 1 2 m 2 v 2 2 \frac{1}{2} m_1 v_1^2=\frac{1}{2} m_2 v_2^2 2 1 m 1 v 1 2 = 2 1 m 2 v 2 2
Polyatomic → \rightarrow → Pressure → \rightarrow → Thermal Equation → \rightarrow → Boyle's Law → \rightarrow → Avogadro's Law
Equipartiton Of Energy L-2
Boyle's Law
P V = 1 3 M n V 2 ∝ P V=\frac{1}{3} M n V^2 \propto P V = 3 1 M n V 2 ∝ Temperature
PV = Constant if T is constant
Boyle's law: P ∝ T P \propto T P ∝ T
Pressure → \rightarrow → Thermal Equation → \rightarrow → Boyle's Law → \rightarrow → Avogadro's Law → \rightarrow → Dalton's Law of Partial Pressure
Equipartiton Of Energy L-2
Avogadro's Law
Thermal Equation → \rightarrow → Boyle's Law → \rightarrow → Avogadro's Law → \rightarrow → Dalton's Law of Partial Pressure → \rightarrow → Pressure
Equipartiton Of Energy L-2
Dalton's Law of Partial Pressure
p 1 = p 1 + p 2 + ⋯ , p_1=p_1+p_2+\cdots, p 1 = p 1 + p 2 + ⋯ ,
p = Momentum transfered
Δ F 1 ⟶ F 1 F 2 → ∑ i F i \Delta F_1 \longrightarrow F_1 \quad F_2 \rightarrow \sum_iF_i Δ F 1 ⟶ F 1 F 2 → ∑ i F i
Boyle's Law → \rightarrow → Avogadro's Law → \rightarrow → Dalton's Law of Partial Pressure → \rightarrow → Pressure → \rightarrow → Mean Free Path
Equipartiton Of Energy L-2
Pressure
Pressure: F n e t L 2 = p 1 + p 2 ⋯ , \quad \frac{F_{n e t}}{L^2}=p_1+p_2 \cdots, L 2 F n e t = p 1 + p 2 ⋯ ,
Two gases P,t
allowed to diffuse
r 1 r 2 = v 1 , r m s v 2 , r m s \frac{r_1}{r_2}=\frac{v_{1, r m s}}{v_{2, r m s}} r 2 r 1 = v 2 , r m s v 1 , r m s
V rms = 3 p ρ = ρ 2 ρ 1 V_{\text {rms }}=\sqrt{\frac{3 p}{\rho}}=\sqrt{\frac{\rho_2}{\rho_1}} V rms = ρ 3 p = ρ 1 ρ 2
Avogadro's Law → \rightarrow → Dalton's Law of Partial Pressure → \rightarrow → Pressure → \rightarrow → Mean Free Path → \rightarrow → Thank You
Equipartiton Of Energy L-2
Mean Free Path
Collisions between the molecules
Average distance that a gas molecule travels between two successes.
l = 1 c n π d 2 l = \frac{1}{cn\pi d^2} l = c nπ d 2 1
n → 0 n \rightarrow 0 n → 0
d → 0 d \rightarrow 0 d → 0
Dalton's Law of Partial Pressure → \rightarrow → Pressure → \rightarrow → Mean Free Path → \rightarrow → Thank You → \rightarrow →
Equipartiton Of Energy L-2
Thank You
Pressure → \rightarrow → Mean Free Path → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Equipartiton Of Energy L-2 Equipartition of Energy $\rightarrow$ $\rightarrow$ Equipartition of Energy $\rightarrow$ Recap $\rightarrow$ Equipartition of Energy