Microscopic And Macroscopic Approach To Thermal Properties L-1
Microscopic and Macroscopic Approach to Thermal Properties
→ \rightarrow →
→ \rightarrow → Microscopic and Macroscopic Approach to Thermal Properties → \rightarrow → These Set of Lectures → \rightarrow → Heat
Microscopic And Macroscopic Approach To Thermal Properties L-1
These Set of Lectures
→ \rightarrow → Microscopic and Macroscopic Approach to Thermal Properties → \rightarrow → These Set of Lectures → \rightarrow → Heat → \rightarrow → Temprature
Microscopic And Macroscopic Approach To Thermal Properties L-1
Heat
Microscopic and Macroscopic Approach to Thermal Properties → \rightarrow → These Set of Lectures → \rightarrow → Heat → \rightarrow → Temprature → \rightarrow → Average Distribution
Microscopic And Macroscopic Approach To Thermal Properties L-1
Temprature
Temprature: Measure which dictates which direction heat flows.
Kinetic Theory of gas temprature : "T"
T ∝ \propto ∝ average translational kinetic Energy.
These Set of Lectures → \rightarrow → Heat → \rightarrow → Temprature → \rightarrow → Average Distribution → \rightarrow → Microscopic and Macroscopic Levels
Microscopic And Macroscopic Approach To Thermal Properties L-1
Average Distribution
Steam Point : Highest of Water
Ice point : Lowest of water
We can measure anything with respect to these two temperature in our Celsius scale.
Average : a huge number of particles, 10 23 10^{23} 1 0 23 .
In mechanics, each molecule described by Newton's laws: m d 2 x ⃗ d t 2 = F ⃗ m \frac{d^2 \vec{x}}{dt^2} = \vec {F} m d t 2 d 2 x = F
3 × 10 23 → 3 \times 10^{23} \rightarrow 3 × 1 0 23 → average description.
Heat → \rightarrow → Temprature → \rightarrow → Average Distribution → \rightarrow → Microscopic and Macroscopic Levels → \rightarrow → Ideal Gas
Microscopic And Macroscopic Approach To Thermal Properties L-1
Microscopic and Macroscopic Levels
Kinetic theory
(i) Distribution
(ii) Gas molecule → \rightarrow → velocities
Distribution of velocity will give me average properties which will be related to kinetic energy.
Thermodynamics language is a coarse-grained description.
In the macroscopic level we will consider the measurable quantities.
P, T → \rightarrow → Intensive
V → \rightarrow → Extensive
Temprature → \rightarrow → Average Distribution → \rightarrow → Microscopic and Macroscopic Levels → \rightarrow → Ideal Gas → \rightarrow → Limiting Situation
Microscopic And Macroscopic Approach To Thermal Properties L-1
Ideal Gas
Equilibrium : Nothing depends on time.
Ideal gas equation: PV = nRT, where n is number of moles.
Ideal gas
(i) Point particles
(ii) No interaction
(iii) Energy is entirely kinetic
Average Distribution → \rightarrow → Microscopic and Macroscopic Levels → \rightarrow → Ideal Gas → \rightarrow → Limiting Situation → \rightarrow → Limiting Situation
Microscopic And Macroscopic Approach To Thermal Properties L-1
Limiting Situation
de Broglie wavelength: λ = h p \lambda = \frac{h}{p} λ = p h
λ = h 2 m k T \lambda = \frac{h}{\sqrt{2mkT}} λ = 2 mk T h
a → \rightarrow → container ofV, N
( V N ) 1 / 3 = a (\frac{V}{N})^{1/3} = a ( N V ) 1/3 = a
a > > λ a>> \lambda a >> λ
Let us assume that the average kinetic energy of a molecule:p 2 2 m ∼ k T \frac{p^2}{2m} \sim kT 2 m p 2 ∼ k T
p ∼ 2 m k T p \sim \sqrt{2mkT} p ∼ 2 mk T
Microscopic and Macroscopic Levels → \rightarrow → Ideal Gas → \rightarrow → Limiting Situation → \rightarrow → Limiting Situation → \rightarrow → Limiting Situation
Microscopic And Macroscopic Approach To Thermal Properties L-1
Limiting Situation
Ideal Gas → \rightarrow → Limiting Situation → \rightarrow → Limiting Situation → \rightarrow → Limiting Situation → \rightarrow → Kinetic Energy of Gas
Microscopic And Macroscopic Approach To Thermal Properties L-1
Limiting Situation
T → \rightarrow → Constant
PV = const.
Charles law: V ∝ T V \propto T V ∝ T
⇒ P V = n R T → \Rightarrow PV = nRT \rightarrow ⇒ P V = n RT → absolute scale of temprature
T = 273 ∘ T = 273^{\circ} T = 27 3 ∘
T → 0 T \rightarrow 0 T → 0
Limiting Situation → \rightarrow → Limiting Situation → \rightarrow → Limiting Situation → \rightarrow → Kinetic Energy of Gas → \rightarrow → Classical Motion
Microscopic And Macroscopic Approach To Thermal Properties L-1
Kinetic Energy of Gas
Kinetic Energy of Gas : Microscopic description.
(i) Molecules are moving in all average directions.
(ii) Points particles size, smaller than interatomic distance.
(iii) Any interaction → \rightarrow → collisions between two molecules.
Limiting Situation → \rightarrow → Limiting Situation → \rightarrow → Kinetic Energy of Gas → \rightarrow → Classical Motion → \rightarrow → Distribution
Microscopic And Macroscopic Approach To Thermal Properties L-1
Classical Motion
Consider classical motion, so all these molecules satisfy Newton's laws of motion.
Collisions are elastic collisions which are all dictated by the classical mechanics.
Homogeneous : density is uniform.
Velocities will be having three components (v x , v y , v z v_x, v_y, v_z v x , v y , v z ).
We will consider complete isotropic.
Equilibrium is independent of time.
Limiting Situation → \rightarrow → Kinetic Energy of Gas → \rightarrow → Classical Motion → \rightarrow → Distribution → \rightarrow → Maxwell's Velocity Distribution
Microscopic And Macroscopic Approach To Thermal Properties L-1
Distribution
x → − ∞ x \rightarrow - \infty x → − ∞ to ∞ \infty ∞
Average value: ⟨ x ⟩ = ∫ x P ( x ) d x \langle x \rangle = \int x P(x) dx ⟨ x ⟩ = ∫ x P ( x ) d x
Total probability: ∫ − ∞ ∞ P ( x ) d x = 1 \int_{-\infty}^{\infty} P(x) dx=1 ∫ − ∞ ∞ P ( x ) d x = 1
P(x)=Ne
Kinetic Energy of Gas → \rightarrow → Classical Motion → \rightarrow → Distribution → \rightarrow → Maxwell's Velocity Distribution → \rightarrow → Ideal Gas in a Container
Microscopic And Macroscopic Approach To Thermal Properties L-1
Maxwell's Velocity Distribution
Velocity components are v x , v y , v z v_x, v_y, v_z v x , v y , v z
v = v x 2 + v y 2 + v z 2 v=\sqrt{v_x^2 + v_y^2 + v_z^2} v = v x 2 + v y 2 + v z 2
P ( v x ) P ( v y ) P ( v z ) d v x d v y d v z P(v_x)P(v_y)P(v_z) dv_x dv_y dv_z P ( v x ) P ( v y ) P ( v z ) d v x d v y d v z
∼ A e − a ( v x 2 + v y 2 + v z 2 ) d v x d v y d v z \sim Ae^{ -a(v_x^2 + v_y^2 + v_z^2)} dv_x dv_y dv_z ∼ A e − a ( v x 2 + v y 2 + v z 2 ) d v x d v y d v z
Speed Distribution:
P ( v ) d v = A v 2 e − b v 2 d v P(v)dv = Av^2 e^{-bv^2} dv P ( v ) d v = A v 2 e − b v 2 d v
Classical Motion → \rightarrow → Distribution → \rightarrow → Maxwell's Velocity Distribution → \rightarrow → Ideal Gas in a Container → \rightarrow → Thank You
Microscopic And Macroscopic Approach To Thermal Properties L-1
Ideal Gas in a Container
Random motion of the particles inside a container.
P V = 1 3 m N v ˉ 2 PV = \frac{1}{3} m N \bar v^2 P V = 3 1 m N v ˉ 2
Euation of state of a gas.
Distribution → \rightarrow → Maxwell's Velocity Distribution → \rightarrow → Ideal Gas in a Container → \rightarrow → Thank You → \rightarrow →
Microscopic And Macroscopic Approach To Thermal Properties L-1
Thank You
Maxwell's Velocity Distribution → \rightarrow → Ideal Gas in a Container → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Microscopic And Macroscopic Approach To Thermal Properties L-1 Microscopic and Macroscopic Approach to Thermal Properties $\rightarrow$
$\rightarrow$ Microscopic and Macroscopic Approach to Thermal Properties $\rightarrow$ These Set of Lectures $\rightarrow$ Heat