- $P=P_0 e^{-(\frac{\rho_0 g}{P_0}) y}$
- $\frac{\rho_0 g}{P_0}$ = $\frac{(1.29 {kg} / \{m}^3) \times(98 \{ms}^{-2})}{(1.013 \times 10^5 {N} / \{m}^2} $ = $1.25 \times 10^{-4} m^{-1}$
- $P = \frac{P_0}{2}$
- $P = P_0 e^{(1.25 \times 10^{-4} m^{-1})} y$
- $y = \frac{ln 2}{1.25 \times 10^{-4} m^{-1}}$, (ln 2 = 0.693)
- = $\frac{0.693}{(1.25 \times 10^{-4} m^{-1})} m $
- = 5550 m = 18,000 ft
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-10-chapter-02-mechanical-properties-of-fluids-2-lecture-2_5-xqox54rispm-06.jpg)