- Problem involving moment of inertia, $ \omega$, linear velocity, rotational kinetic energy, orbital angular momentum, etc.
- Given a symmetric body is rotating about axis.
- Rotational kinetic energy: $ K E_{\text {Rot }}=K E=\frac{1}{2} I \omega^2-(1)$
- $ l=I \omega $
- $ \frac{K E}{l}=\frac{\omega}{2} \Rightarrow \omega=\frac{2 K E}{l} $
- $ I=\frac{l}{\omega}=\frac{l^2}{2 K E}$
- **$\omega$ is** (A)$\frac{{2KE}}{l}$, (B)$\frac{K E}{l}$, (C)$ \frac{K E}{2 l}$, (D)$ \frac{K E}{\sqrt{2 l}} $
- $ \omega=\frac{K E}{l} $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-09-problem-s1-motion-of-system-particles-and-bodies-l-9_10-pvvxz7zi7qi-04.jpg)