###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Rotational motion about a fixed axis-angular momentum System of Particles and Rotational Motion
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-08-rotational-motion-abouta-fixed-axis-angular-momentum-system-nyhe3y8dqve-020-0022.4.jpg)
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Angular Momentum - Rotation About a Fixed Axis
- (1) Expression for the orbital angular momentum. - (2) Principle of conservation of angular momentum - (3) Rotation, roling and slipping - (4) An example
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Angular Momentum
- $\vec{l} =\vec{r} \times \vec{p} \quad \vec{p}=n \vec{v} $ - $\vec{r}=\vec{op} =\overrightarrow{o c}+\vec{cp} $ - $\vec{l} =(\overrightarrow{o c}+\vec{cp}) \times m \vec{v} $ - =$(\vec{oc} \times m \vec{v})+(\vec{cp} \times m \vec{v}) $ - $\vec{l} =(\vec{oc} \times m \vec{v})+(r_{\perp}^2 m \omega \hat{k}) \vec{l}_z $ - $\vec{l} =\vec{l}_z+\overrightarrow{o c} \times m \vec{v}$ - $\vec{l_z} \parallel \hat{k}$
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Angular Momentum
- In general $\vec{\imath} \text { and } \vec{\omega}$ must not be parallel. - $\vec{L}=\sum_i \vec{l_i}=\sum \vec{l}_{i_z}+\sum_i \overrightarrow{o c}_i \times m \vec{v}_i$ - $\vec{L}=\vec{L_z}+\vec{L_\perp}, \vec{L_z}$ - $=\sum \vec{l_{i_z}}=\left(\sum_i m_i r_{\perp_i}^2\right) \omega \hat{k}$ - $\vec{L}_z=I \omega \hat{k} \quad(p=m v)$ - So, $\vec{L_{\perp}}$=0, - $ \vec{L}=\vec{L}_z= I \omega \hat{k}$
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Example
- Example 1 :- Circular Disc - $\vec{L}=(I \omega) \hat{k}=\left(\frac{M R^2}{2} \omega\right) \hat{k}$ - $\vec{L}=2 \omega \hat{k} ; \frac{d \vec{L}}{d t}=I \frac{d \omega}{d t} \hat{k}=(I \alpha) \hat{k}=\tau \hat{k}$ - similarly $\vec{L}=\hat{L_z}+\vec{L_{\perp}} ; \frac{d \vec{L_z}}{d t}=\tau \hat{k} ; \frac{d \vec{L_{\perp}}}{d t}$ =0
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Example
- Example 2 :- - $\vec{L}=(I \omega) \hat{k} $ - $\left(\frac{M R^2}{2}+M \alpha^2\right) \omega \hat{k}$ -
"Parallel axis" Theorem
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Principle of Conservation of Angular Momentum (PCAM)
- The total angular momentum of a system is constant, if the resultant external torque acting in the system - is zero. - $I_i \omega_i=I_f \omega_f$=constant
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-08-rotational-motion-abouta-fixed-axis-angular-momentum-system-nyhe3y8dqve-05.jpg)
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Illustration
- The line of motion of bullet perpendicular to the axis of the cylinder - Before collision: $l_i=m v_o d$ - After the collision: $l_f = I \omega$ - $(I_\text{{solid cylinder}} + I_\text{{ projectile}} ) \omega$ - $\left(\frac{M R^2}{2}+m R^2\right) \omega=m v_0 d$ - $\omega =\frac{mv_0d}{\left(\frac{M R^2}{2}+m R^2\right)}$
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Illustration 2
- Question :- $\omega_c = ?$ - $l=I \omega$ and $l_i=l_f$ - $I_i=I_{c p}+I_m=\frac{M R^2}{2}+m R^2 $ - $I_f=I_{c p}+I_m \quad=\frac{M R^2}{2}+m x^2 $ - PCAM : $I_i \omega_i = I_f \omega_f$ - $(\frac{M R^2}{2}+m R^2) \omega = (\frac{M R^2}{2}+m x^2) \omega_c$ - $\omega_c=\frac{\left(\frac{M R^2}{2}+m R^2\right)}{\left(\frac{M R^2}{2}+m x^2\right)} \omega$ where $\omega_c > \omega$
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Rotation, Rolling and Slipping
- The rotating disc is moves gently on the table frictionless. - $v_A=R \omega_0, v_B =R \omega_0 $ - $v_c =\frac{R}{2} \omega_0$ - Disc only rotates ; it will not roll !
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Rotation, Rolling and Slipping
- At $P_0:\left|\vec{v_{P_0}}\right|=\vec{v_{C M}}_=R \omega_0$ - $P_0$ is at instantaneous rest: - $v_{CM} = R\omega_0$ - $\left|\vec{v_{P_1}}\right|=v_{C M}+R M=2 v_{C M}$ - Condition for rolling withouts slipping
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Kinetic Energy of Rolling motion
- $K =K E \text { of a rolling body} $ - $=K E \text { of translation }+K E \text { of rotation}$ - $\text { KE of a system of particles} $ - $=K E |+K E \text { rotational motion about the CM } $ - $k=\frac{1}{2} m v_{c_m}^2+\frac{1}{2} I \omega^2$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-08-rotational-motion-abouta-fixed-axis-angular-momentum-system-nyhe3y8dqve-09.jpg)
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Kinetic Energy of a system of particles
- $=K E |+K E$ rotational motion about the CM - $k=\frac{1}{2} m v_{c_m}^2+\frac{1}{2} I \omega^2$ - $v_{CM} = R\omega$ - $I=mk^2, ' k ':$ radius of gyration - $k=\frac{1}{2} m k^2 \frac{v_{CM}^2}{R^2}+\frac{1}{2} m v_{C M}^2$ - $k=\frac{1}{2} m v_{c m}^2\left(1+\frac{k^2}{R^2}\right)$ - The $K E$ of a rolling body - =$KE$ of translation + $KE$ of rotation
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-08-rotational-motion-abouta-fixed-axis-angular-momentum-system-nyhe3y8dqve-10.jpg)
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Kinetic Energy of a system of particles
- a ring, a solid cylinder, a sphere - $\operatorname{mgh}=\frac{m v^2}{2}\left(1+\frac{k^2}{R^2}\right) \Rightarrow v=\left(\frac{2gh}{1+\frac{k^2}{R^2}}\right)^{1 / 2}$ - Greatest velocity | Object | $k$ | $v$ | | -------- | -------- | -------- | | Circular ring| R | $\sqrt{gh}$ | | $0^r$ disc | $\frac{R}{\sqrt{2}}$ | $\sqrt{\frac{4}{3}gh}$ | | Sphere (solid) | $\sqrt{\frac{2}{5}}R$ | $\sqrt{\frac{10}{7}gh}$ |
###
Rotational Motion Abouta Fixed Axis Angular Momentum System L-8
###
Thank You
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-08-rotational-motion-abouta-fixed-axis-angular-momentum-system-nyhe3y8dqve-109-3282.4.jpg)