- $a_r = \frac {v^2}{r}$ (centripetal acceleration)
- $ = \frac{(r \omega)^2}{r} = r \omega^2 = r (\frac {d \theta }{dt})^2 = r \theta ^2$
- $\vec{A}_r=-r \dot{\theta}^2 \hat{e}_r $
- $\vec{a} = \vec{A} = A r \hat{e_r} + A_t \hat{e_\theta}$ :
- a = $|\vec{a}|$ = $\sqrt {a_t^2 + a_r^2}$ = $\sqrt {(r \alpha)^2 + (r \omega^2 )^2}$
- a = r$\sqrt{ {\alpha}^2+ {\omega}^4}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-07-rotational-motion-fixed-axis-kinematics-dynamics-l-7_10-pdqi4hz644u-03.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-07-rotational-motion-fixed-axis-kinematics-dynamics-l-7_10-pdqi4hz644u-06.jpg)