- The forces acting on rigid bodies can be divided into two groups:
- Internal: $\vec{F}_{int} $ : (either for translation or rotation)
- External: $\vec{F}_{ext}$
- Concept of system is in mechanical equilibrium.
- $\vec{p}$ is a constant of motion
- $\sum_{i=1}^n \vec{F}_i=0 \text { Translational Equilibium }$
- $\sum_y F_{i x}=0, \sum_y F_{i y}=0 , \sum_i F_{iz}=0 $
- $\sum_i \vec{\tau_i}=0$ Rotational Equilibrium
- $\sum_i \tau_{i x}=0, \sum_i \tau_{i y}=0, \sum_i \tau_{i z}=0$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-05-equilibrium-ofa-rigid-body-moments-and-center-of-gravity-vu2yw9f27ig-01.jpg)