###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Vector Products, Angular Velocity, Angular Acceleration
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-010-0020.4.jpg)
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Vector Products
- We have two vectors A and B. -
The 'dot' Product
: $\vec{A}.\vec{B} = |\vec{A}||\vec{B}| \cos \theta$ - Suppose a force is acting on a particle. Then the work done by the force, - W = $\int_A^B \vec{F}.\vec{ds}$.
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-015.jpg) ![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-016.jpg)
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Cross Product
- $\vec{a} \times \vec{b} = |\vec{a}||\vec{b}| \sin \theta \hat{n}$ - $'\theta'$ is taken through the smaller angle ($<180^0$)
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Properties of Cross Product
- **1.** $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$ = - $\vec{b} \times \vec{a}$ - **2.** Reflection $\vec{a} \rightarrow -\vec{a}$ - $\vec{b} \rightarrow -\vec{b}$ - $\vec{a} \times \vec{b} = (-\vec{a}) \times (-\vec{b})$ - **3.** $\vec{a} \times \vec{c} = 0$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Unit Vector
- ($\hat{i}, \hat{j}, \hat{k}$) $\equiv$ ($\hat{e_x}, \hat{e_y}, \hat{e_z}$) - $\hat{i} \times \hat{j} = \hat{k},$ - $\hat{j} \times \hat{k} = \hat{i},$ - $\hat{i} \times \hat{i} = 0$ - $\hat{j} \times \hat{i} = \hat{-k},$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Cross Product
- $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k},$ - $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$ - $\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\\ a_z & a_y & a_z \\\ b_x & b_y & b_z\end{array}\right|$ - $\vec{a} \times \vec{b}$ = $\hat{i} (a_y b_z - b_y a_z) - \hat{j} (a_x b_z - a_z b_x) + \hat{k} (a_x b_y - b_x a_y)$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Example
- $\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k},$ - $\vec{b} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k}$ - $\vec{c} = \vec{a} \times \vec{b}$ = - $\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\\ 1 & 2 & 3 \\\ 2 & 3 & 4\end{array}\right|$ - = $\hat{i} (8-9) - \hat {j} (4-6) + \hat{k} (3-4)$ = $\hat{i} + 2 \hat{j} - \hat{k}$ - $\vec{c} . \vec{a} = (- \hat{i} + 2 \hat{j} - \hat{k}) . (\hat{i} + 2 \hat{j} + 3 \hat{k}) $ = -1+4-3 = 0
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Average Angular Velocity
- $\Delta \theta$ : Angular Displacement - $\Delta t$: time period - $\vec{\omega}$: The direction of $\vec{\omega}$ is specified by - The average angular velocity over the interval $\Delta t = \frac{\Delta \theta }{ \Delta t}$ - $\ {lim_{\Delta t \rightarrow 0 }} \frac {\Delta \theta }{\Delta t} = \frac{d \theta}{dt} =$ Instantaneous angular velocity.
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Instantaneous Angular Velocity
- $r (\Delta \theta ) = \Delta s$ - $r \frac{\Delta \theta }{\Delta t} = \frac{ \Delta s }{\Delta t}$ - In the limit $\Delta t \rightarrow 0$ - $r \frac {d \theta }{dt} = v$ - $r \omega = v$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Instantaneous Angular Velocity
- $\vec{\omega} \times \vec{r} = \vec{\omega} \times (\vec{OC} + \vec{CP})$ - = $(\vec{\omega} \times \vec{OC}) + (\vec{\omega} \times \vec{cp})$ - $\vec{\omega} \times \vec{r}$ = $(\vec{\omega} \times \vec{cp})$ = $|\vec{\omega}||\vec{CP}|$ - = $\omega r_{\perp}$ - = $\vec{\omega} \times \vec{r} = \vec{v}$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Angular Acceleration
- $\frac{d \omega } {dt}$ = $\vec{\alpha}$, the angular acceleration - $v = r \omega$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Angular Acceleration
- **Diffrention both side w.r.t 't'** - $\frac{dv}{dt}$ = $\frac{dr}{dt} \omega + r \frac{d \omega }{dt}$ = $r \alpha$ - $\alpha = |\vec{\alpha}|$ - $A_t = \frac{dv}{dt} = r \alpha$ - $\vec{A_t} = \vec{\alpha} \times \vec{r}$ (compare this with $\vec{v} = \vec{\omega} \times \vec{r}$) - $A_r = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = \omega (r \omega)$ - $\vec{A_r} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-027.jpg) ![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-028.jpg)
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Particle in Two Dimension
- $\vec{r} =r \hat{e}_r $ - $\vec{v}=\frac{d \vec{r}}{d t} =(\frac{d r}{d t} \hat{r_r})+r \frac{d \hat{e}_r}{d t} $ - $\vec{v} =\dot{r} \hat{e}_r+r \dot{\theta} \hat{e}_\theta $ - $\vec{v} =(v_r) \hat{e}_{r+} (\vec{r}_\theta) \hat{e}_\theta$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
For a rigid body motion
- $v_r=0$ - $\vec{v}=r \omega \hat{e_{\theta}}$ - $x = r \cos \theta,$ - $y = r \sin \theta$ - $|\vec{r}|=1 $
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
For a rigid body motion
- $y=\sin \theta $ - $\dot{r}=\frac{d}{d t}(r) $ - $\hat{e_r}=\cos \theta \hat{e}_x+\sin \theta \hat{e}_y$ - $\frac{d}{d t} (\hat{e_r})=(-\sin \theta \hat{e_t})+ (\cos \theta \hat{e}_y) \dot{\theta}$ = $\hat{e}_\theta \dot{\theta}$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Angular Acceleration in Two Dimension
- $\vec{A}=\frac{d \vec{v}}{d t}=\frac{d}{d t} (\dot{r} \hat{e}_r + r \dot{\theta} \hat{c}_\theta )$ - =$\ddot{r} \hat{e}_r+\dot{r} \frac{d}{d t} (\hat{e}_r)+\frac{d r}{d t} \dot{\theta} \hat{e}_\theta+r \ddot{\theta} \hat{e}_\theta+r \dot{\theta} \frac{d}{d t} \hat{e}_0) $ - $ = \ddot{r} \hat e_{r} + \dot{r} (\hat{e}_{\theta} \dot{\theta})$ - $ + \dot{r} \dot{\theta} \hat e_{\theta} + r \dot{\theta} \hat e_{\theta}$ - $ + r \dot{\theta} (-\dot{\theta} \hat{e}_{r}) $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-030.jpg)
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Angular Acceleration in Two Dimension
- $ =(\ddot{r}-r \dot{\theta}^2) \hat{e_r}+(r \dot{\theta}+2 \dot{r} \dot{\theta}) \hat{e}_\theta $ - = $A_r \hat{e_r} + A_{\theta} \hat{e{\theta}}$ - $A_r = \frac{v^2}{r} = \frac{(r {\omega})^2} {r} = \omega (r \omega)$ - $\vec{A}_r = \vec{\omega} \times (\omega \times \vec{r})$ - For a rigid body (n=0) - $A_r = - r \dot{\theta}^2$ - $A_{\theta} = r \dot{\theta }$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Angular Velocity in Two Dimension
- $x = r \cos \theta,$ - $y = r \sin \theta$ - $|\vec{r}|=1 $ - $x=\cos \theta $ - $y=\sin \theta $
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Angular Velocity in Two Dimension
- $\dot{r}=\frac{d}{d t}(r) $ - $\hat{e_r}=\cos \theta \hat{e}_x+\sin \theta \hat{e}_y$ - $\frac{d}{d t} (\hat{e_r})=(-\sin \theta \hat{e_t})+ (\cos \theta \hat{e}_y) \dot{\theta}$ - = $\hat{e}_\theta \dot{\theta}$
###
Vector Products Angular Velocity And Angular Acceleration L-3
###
Thank You
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-03-vector-products-angular-velocity-and-acceleration-l-3_10-afmammcc6rg-734-3252.0.jpg)