(1,1)≡1i^+1j^=i^+j^
≡1e^x+1e^y=e^x+e^y
Rcm=(0,0)
Rcm=62(1/2,1/2)+1(1/2,−1/2)
6+2(−1/2,−1/2)+1(−1/2,1/2)
=(6,6)
m1+m2+...+mn=M
R≡Rcm
=∑i=1nmi∑i=1nmiri
=M∑i=1nmiri
MR=m1r1+m2r2+..+mnrn
Differentiate w.r.t 't' on both sides
MdtdR=m1dtdr1+m2dtdr2+..+mndtdrn
Mv=m1v1+m2v2+..+mnvn
V=Vcm= velocity of centre of mass
MA=m1a1+m2a2+..+mnan
A=dtdv;ai=dtdvi
MA=F1+F2+..+Fn
=Fext
MA=m1a1+m2a2+..+mnan
A=dtdv;ai=dtdvi
MA=F1+F2+..+Fn
=Fext
MA=Fext Covering equation
Forces
1) External
2) Internal
Linear momentum of a system of particles
p=mv,dtdp=F
P=p1+p2+..+pn
MV=dtdP=Fext
Suppose, Fext=0
dtdP=0=P=c, a constant vector
⇒ The linear momentum of the system of particle remains the same.
⇒P is a constant of motion.
P is constant.
i.e., the vCM remains constant.
Fext=0
Motion of various parts of a system is separated (or spit) into:
(1) motion of CM
(2) motion about the CM
Question: What about the total KE of a two particle system relative to CM?
vCM=m1+m2m1v1+m2v2
Velocity of m1 w r t CM, v1,CM
=v1−vCM
=v1−(m1+m2m1v1+m2v2)
=m1+m+2m1v1−m1v1+m2v1−m2v2
v1,CM=m1+m2m2(v1−v2)
v2,CM=v2−vCM
=v2−(m1+m2m1v1+m2v2)
v2,CM=m1+m2m1(v2−v1)
KE∣m1,CM=21m1(m1+m2m2v12)2
=21m1(m1+m2)2m22∣v12∣2
KE∣m2,CM=21m2(m1+m2m1v21)2
=21m2(m1+m2)2m12∣v12∣2
KE∣system,CM
=21(m1+m2)2m1m2∣v1,2∣2(m2+m1)
KE∣system,CM
=21(m1+m2m1m2)∣v1,2∣2
Reduced mass
μ0=m1+m2m1m2
KE∣Total=21μ∣vrel∣2+2MvCM2
KE∣=21μ∣vrel∣2+21(m1+m2)(m1+m2m1v1+m2v2)2
RHS =21m1+m2m1m2(v1−v2)2
=21m1+m2m1m2(v12+v22−2v1.v2)
= +21(m1+m2)2(m1+m2)(m12v12+m22v22+2m1m2v1.v2)+21(m1+m2)1(m12v12+m22v22+2m1m2v1.v2)
=21m1v12+21m2v22
KE∣Total=21m1v12+21m2v22
μ=M=m1+m2m1m2
μ1=m11+m21
μ≤m1,μ≤m2
Reduced mass is always less or equal to mass of each body.