###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Introduction, Center of Mass System of Particles and Rotational Motion
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-07-chapter-01-center-of-mass-system-of-particles-and-rotational-motion-1_10-4vpgfmdfo6a-010-0020.4.jpg)
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Systems of particles and rotational motion
- **
Motivation
** - The motion of point particles. - If one has extended objects like a football, in kinematics, football is represented by a point particle. - Ideal rigid body is one which does not deform, and shape does not change.
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Two Kinds of Motions
-
1. Translational motion
-
Slipping
-
Skidding
- Wheel rotating about an axis and moving, has got both rotational motion and translational motion.
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Two Kinds of Motions
- All the particles of body have the same velocity $\vec{v}$:
Translational motion.
- The instantaneous velocity is zero, so different points have different velocities. -
Rotational motion:
rotation of rigid body about a fixed axis. - Different points on rigid body, having different linear velocities.
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Precision
- Axis of the top processes about the vertical line this is known as
precision.
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Systems of particles and rotational
- The ball goes without rotating about any axis:
Pure translation
- Rotation about a fixed axis:
Rotational motion
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Rotate a Door
- Applying a normal force or some force which is making an angle to the door. - If one apply the force at the hinges, the door is not going to rotate. - Rotation is all about the point of application of a force.
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Centre of Mass
- Standard example: Pedestal fan - Blade rotates and you get the air.
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Center of Mass
- $X_{C M}=\frac{m_1 x_1+m_2 x_2}{m_1+m_2}$ - if $m_1 = m_2$ - $X_{C M}=\frac{x_{1+} x_2}{2}$ - **Several Particles System** - $X_{c_M}=\frac{m_1 x_1+m_2 x_2+\cdot +m_n x_n}{\left(m_1+m_2+\cdot+m_n\right)}$ - $X_{C M}=\frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i}$
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Position Vector
- $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z\hat{k}$ - The unit vectors, $\hat{e}_x, \hat{e}_y \operatorname{and} \hat{e}_z$ - $\vec{r}=x \hat{e}_x+y \hat{e}_y+z \hat{e}_z$ - $\vec{r}_{cm} $= $\frac{\sum m_1 \vec{r}_1}{\sum m_1}$
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Center of Mass Rigid Body
- $X_{C M}=\frac{\sum_{i=1}^N\left(\Delta m_i\right) x_i}{\sum_{i=1}^N\left(\Delta m_i\right)} \rightarrow \frac{\int x d m}{\int d m}$ - $\vec{r}_{C M}=\frac{\int \vec{r} d m}{\int d m}$
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Center of Mass Solar System
- Choose the center of sun as the origin. - $m_1$ = Mass of the Sun = $2 \times 10^{30}$ kg - $m_2$ = Mass of the Earth = $6 \times 10^{24}$ kg - $r_1$ = Distance of the Sun from the origin = 0 (since the origin is the center of the Sun) - $r_2$ = Distance of the Earth from the Sun = $1.5 \times 10^{11}$ meters - $ R = \frac{m_1 \times r_1 + m_2 \times r_2}{m_1 + m_2}$ - $ R = \frac{(2 \times 10^{30} \times 0) + (6 \times 10^{24} \times 1.5 \times 10^{11})}{2 \times 10^{30} + 6 \times 10^{24}}$ - $R \approx 4.5 \times 10^{5} \text{ meters}$
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/0cd7e4a5-a99e-4fd6-35e2-4b40e712de00/public)
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Two-Dimensional Example
- $(-1,1) =-1\hat{i}+1 \hat{j} =-\hat{i}+\hat{j}$ - $\vec{R} =\frac{1(-1,1)+2(1,1)+1(1,-1)+2(-1,-1)}{6} $ - $ =\frac{(0,0)}{6}=(0,0)$ - $ \vec{R}=(0,0)$
###
Center Of Mass System Of Particles And Rotational Motion L-1
###
Thank You