Impact And Collision L-5
Impact and Collision
→ \rightarrow → → \rightarrow → Impact and Collision → \rightarrow → Impact and Collision → \rightarrow → Impact and Collision
Impact And Collision L-5
Impact and Collision
We will consider problems of impact and collision .
Body one is moving with speed v 1 v_1 v 1 , and body two is moving with a speed of v 2 v_2 v 2 .
They touch each other: Impact
→ \rightarrow → Impact and Collision → \rightarrow → Impact and Collision → \rightarrow → Impact and Collision → \rightarrow → Impact
Impact And Collision L-5
Impact and Collision
Two bodies, one and two of mass m 1 m_1 m 1 and m 2 m_2 m 2 impact each other and move after the impact.
Impact - COLLISION
The bodies are approaching each other, can we find the final velocities of these bodies using the laws of mechanics .
Impact and Collision → \rightarrow → Impact and Collision → \rightarrow → Impact and Collision → \rightarrow → Impact → \rightarrow → Impact
Impact And Collision L-5
Impact
Impact takes place over a very small period of time.
Impact force → \rightarrow → large .
Impact → \rightarrow → instantaneous impulsive force .
i → i \rightarrow i → just before impact or pre impact.
Impact and Collision → \rightarrow → Impact and Collision → \rightarrow → Impact → \rightarrow → Impact → \rightarrow → Line of Impact
Impact And Collision L-5
Impact
f → f \rightarrow f → position just after impact .
Because the time of impact is very small, we will assume position of bodies do not change.
Impact and Collision → \rightarrow → Impact → \rightarrow → Impact → \rightarrow → Line of Impact → \rightarrow → Impact
Impact And Collision L-5
Line of Impact
t → t \rightarrow t → tangent plane of the bodies .
In two dimension, t t t will be a line.
Perpendicular to t t t in the plane.
n n n direction is the line of impact .
Impact → \rightarrow → Impact → \rightarrow → Line of Impact → \rightarrow → Impact → \rightarrow → Collision Force
Impact And Collision L-5
Impact
When we have two impacting bodies, we identify
t → \rightarrow → as the plane of contact .
n → \rightarrow → line of impact .
Smooth impact ⇒ \Rightarrow ⇒ impact force on each body separately is along the line of impact.
Impact → \rightarrow → Line of Impact → \rightarrow → Impact → \rightarrow → Collision Force → \rightarrow → Direct or Head-on Collision
Impact And Collision L-5
Collision Force
Line of Impact → \rightarrow → Impact → \rightarrow → Collision Force → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision
Impact And Collision L-5
Direct or Head-on Collision
i
f
Pre Impact
Post Impact
Impact → \rightarrow → Collision Force → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision
Impact And Collision L-5
Direct or Head-on Collision
If v 1 i → \overrightarrow{v_{1 i}} v 1 i and v ⃗ 2 i \vec{v}_{2 i} v 2 i are only along n n n direction, then the collision is head-on / direct collision.
How to decide if a collision is head-on or a direct collision?
Draw the tangent plane, t → ( n ⊥ t ) t \rightarrow (n \perp t) t → ( n ⊥ t ) .
Collision Force → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct Collision/Head-on Collision
Impact And Collision L-5
Direct or Head-on Collision
If either of v 1 i → \overrightarrow{v_{1 i}} v 1 i or v 2 i → \overrightarrow{v_{2 i}} v 2 i has a component along t t t , which is not zero, then the impact is not direct (oblique Impact) / not head-on .
Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct Collision/Head-on Collision → \rightarrow → Analysis
Impact And Collision L-5
Direct Collision/Head-on Collision
Normally in a problem v 1 i → , v 2 i → \overrightarrow{v_{1 i}}, \overrightarrow{v_{2 i}} v 1 i , v 2 i , m 1 m_1 m 1 and m 2 m_2 m 2 are given.
We wish to find v 1 f → \overrightarrow{v_{1 f}} v 1 f , and v 2 f → \overrightarrow{v_{2 f}} v 2 f .
Direct or Head-on Collision → \rightarrow → Direct or Head-on Collision → \rightarrow → Direct Collision/Head-on Collision → \rightarrow → Analysis → \rightarrow → Direct Collision/Head-on Collision.
Impact And Collision L-5
Analysis
Direct or Head-on Collision → \rightarrow → Direct Collision/Head-on Collision → \rightarrow → Analysis → \rightarrow → Direct Collision/Head-on Collision. → \rightarrow → Direct Collision/Head-on Collision
Impact And Collision L-5
Direct Collision/Head-on Collision.
If we apply Impulse momentum principle on body 1:
v 1 i → \overrightarrow{v_{1 i}} v 1 i is only along n n n .
m 1 v 1 i → + I → = m 1 v 1 f → m_1 \overrightarrow{v_{1 i}}+\overrightarrow{I} {=} m_1 \overrightarrow{v_{1 f}} m 1 v 1 i + I = m 1 v 1 f
Initially momentum: m 1 v 1 i → m_1 \overrightarrow{v_{1 i}} m 1 v 1 i
Finally momentum: m 1 v 1 f → m_1 \overrightarrow{v_{1 f}} m 1 v 1 f
Direct Collision/Head-on Collision → \rightarrow → Analysis → \rightarrow → Direct Collision/Head-on Collision. → \rightarrow → Direct Collision/Head-on Collision → \rightarrow → Oblique Collision
Impact And Collision L-5
Direct Collision/Head-on Collision
If v 1 i → \overrightarrow{v_{1 i}} v 1 i only along n n n i.e., head on collision,
t t t component of v ⃗ l i = 0 \vec{v}_{l i}=0 v l i = 0
Impulse is also along n ^ \hat{n} n ^ ,v 1 f → \overrightarrow{v_{1 f}} v 1 f is also along n ^ \hat{n} n ^
t t t component of v → 1 f = 0 \overrightarrow{v}_{1 f}=0 v 1 f = 0 .
Analysis → \rightarrow → Direct Collision/Head-on Collision. → \rightarrow → Direct Collision/Head-on Collision → \rightarrow → Oblique Collision → \rightarrow → Oblique Collision
Impact And Collision L-5
Oblique Collision
Both the bodies will move with the same velocity just after collision.
v ⃗ 1 i → \vec{v}_{1 i} \rightarrow v 1 i → n component and t component ≠ 0 \neq 0 = 0 .
Impulsive force is only along n.
Direct Collision/Head-on Collision. → \rightarrow → Direct Collision/Head-on Collision → \rightarrow → Oblique Collision → \rightarrow → Oblique Collision → \rightarrow → Direct Collision
Impact And Collision L-5
Oblique Collision
t t t component of momentum of body 1 will not change, because impulse on the body 1 is only along n n n
( v 1 t ) i = ( v 1 t ) f (v_ {1t}) _ i = (v_ {1t})_f ( v 1 t ) i = ( v 1 t ) f
Direct Collision/Head-on Collision → \rightarrow → Oblique Collision → \rightarrow → Oblique Collision → \rightarrow → Direct Collision → \rightarrow → Direct Collision
Impact And Collision L-5
Direct Collision
Same arguments hold for body 2.
v 2 i ⃗ \vec{v{ }_{2 i}} v 2 i (intial velocity)
v ⃗ 2 f \vec{v}{ }_{2 f} v 2 f (final velocity)
Since Impulse is only along n ^ \hat{n} n ^ :
( v 2 t ) i = ( v 2 t ) f (v_ {2t}) _ i = (v_ {2t})_f ( v 2 t ) i = ( v 2 t ) f
Our unknowns are v 1 f v_{1 f} v 1 f and v 2 f v_{2 f} v 2 f (which are along n).
− m 2 v 2 i + I = m 2 v 2 f -m_2 v_2 i+{I} =m_2 v_{2 f} − m 2 v 2 i + I = m 2 v 2 f
Alternate: Momentum equation in the n n n direction for both the bodies together.
Oblique Collision → \rightarrow → Oblique Collision → \rightarrow → Direct Collision → \rightarrow → Direct Collision → \rightarrow → Direct Collision
Impact And Collision L-5
Direct Collision
Oblique Collision → \rightarrow → Direct Collision → \rightarrow → Direct Collision → \rightarrow → Direct Collision → \rightarrow → Coefficient of Restitution
Impact And Collision L-5
Direct Collision
Impulse for both the bodies as a system = 0
Momentum of both bodies along x x x direction must be conserved .
m 1 v 1 i − m 2 v 2 i = m 1 v 1 f + m 2 v 2 f m_1 v_{1 i}-m_2 v_{2 i}=m_1 v_{1 f}+m_2 v_{2 f} m 1 v 1 i − m 2 v 2 i = m 1 v 1 f + m 2 v 2 f
This is one equation and there are two unknowns v 1 f v_{1 f} v 1 f and v 2 f v_{2 f} v 2 f .
Direct Collision → \rightarrow → Direct Collision → \rightarrow → Direct Collision → \rightarrow → Coefficient of Restitution → \rightarrow → Elastic collision
Impact And Collision L-5
Coefficient of Restitution
Need some extra information.
Coefficient of restitution 'e'
For elastic collision e = 1 e=1 e = 1 .
Fully non-elastic or a plastic collision e = 0 e=0 e = 0 .
Direct Collision → \rightarrow → Direct Collision → \rightarrow → Coefficient of Restitution → \rightarrow → Elastic collision → \rightarrow → Non- Elastic Collisions
Impact And Collision L-5
Elastic collision
Elastic collision: e = 1 e=1 e = 1
Kinetic energy of the two bodies together as system is conserved before and after collision.
If a collision is not elastic then (kinetic energy post collision) < < < (kinetic energy pre collision) .
Direct Collision → \rightarrow → Coefficient of Restitution → \rightarrow → Elastic collision → \rightarrow → Non- Elastic Collisions → \rightarrow → Coefficient of Restitution
Impact And Collision L-5
Non- Elastic Collisions
Lost energy in non elastic collisions may be converted to sound / internal energy of the two bodies show up as heat.
Completely inelastic collision e = 0 e=0 e = 0
v 1 f v_{\text {1 f}} v 1 f and v 2 f v_{2 f} v 2 f in n direction are equal.
n component of v 1 f v_{1 f} v 1 f = n component of v 2 f v_{2_f} v 2 f
Coefficient of Restitution → \rightarrow → Elastic collision → \rightarrow → Non- Elastic Collisions → \rightarrow → Coefficient of Restitution → \rightarrow → Separation and approach
Impact And Collision L-5
Coefficient of Restitution
e = Coefficient of Restitution
e = − (elative velocity of separation) (relative velocity of approach) e=\frac{- \text { (elative velocity of separation) }}{\text { (relative velocity of approach) }} e = (relative velocity of approach) − (elative velocity of separation)
Separation is always post impact and approach is pre-impact.
Elastic collision → \rightarrow → Non- Elastic Collisions → \rightarrow → Coefficient of Restitution → \rightarrow → Separation and approach → \rightarrow → Relative Velocity of Separation
Impact And Collision L-5
Separation and approach
n component of velocity of point which are impacting each other.
Non- Elastic Collisions → \rightarrow → Coefficient of Restitution → \rightarrow → Separation and approach → \rightarrow → Relative Velocity of Separation → \rightarrow → Separation and approach
Impact And Collision L-5
Relative Velocity of Separation
( v A f ) n − ( v B f ) n (v_ {Af}) _ n - (v_ {Bf})_n ( v A f ) n − ( v B f ) n
Coefficient of Restitution → \rightarrow → Separation and approach → \rightarrow → Relative Velocity of Separation → \rightarrow → Separation and approach → \rightarrow → Separation and approach
Impact And Collision L-5
Separation and approach
Separation and approach → \rightarrow → Relative Velocity of Separation → \rightarrow → Separation and approach → \rightarrow → Separation and approach → \rightarrow → Separation and approach
Impact And Collision L-5
Separation and approach
e = − (relative velocity of separation) (relative velocity of approach) e=\frac{- \text { (relative velocity of separation) }}{\text { (relative velocity of approach) }} e = (relative velocity of approach) − (relative velocity of separation)
e = − ( v 1 f − v 2 f ) ( v 1 i + v 2 i ) e=\frac{-(v_{1 f}-v_{2 f})}{(v_{1 i}+v_{2 i})} e = ( v 1 i + v 2 i ) − ( v 1 f − v 2 f )
e ( v 1 i + v 2 i ) = v 2 f − v 1 f e\left(v_{1 i}+v_{2 i}\right)=v_{2 f}-v_{1 f} e ( v 1 i + v 2 i ) = v 2 f − v 1 f
Relative Velocity of Separation → \rightarrow → Separation and approach → \rightarrow → Separation and approach → \rightarrow → Separation and approach → \rightarrow → Separation and approach
Impact And Collision L-5
Separation and approach
m 1 v 1 i − m 2 v 2 i = m 1 v 1 f + m 2 v 2 f m_1 v_{1 i}-m_2 v_{2 i}=m_1 v_{1 f}+m_2 v_{2 f} m 1 v 1 i − m 2 v 2 i = m 1 v 1 f + m 2 v 2 f ...(1)
e = v 2 f − v 1 f v 2 i + v 1 i e=\frac{v_{2 f}-v_{1 f}}{v_{2 i}+v_{1 i}} e = v 2 i + v 1 i v 2 f − v 1 f
v 2 f = v 1 f + e ( v 2 i + v 1 i ) v_{2 f}=v_{1 f}+e(v_{2 i}+v_{1 i}) v 2 f = v 1 f + e ( v 2 i + v 1 i ) ...(2)
Substitution in (1)
m 1 v 1 i − m 2 v 2 i = m 1 v 1 f + m 2 ( v 1 f + e v 2 i + e v 1 i ) m_1 v_{1 i}-m_2 v_{2 i}=m_1 v_{1 f}+m_2(v_{1 f}+e v_{2 i}+e v_{1 i}) m 1 v 1 i − m 2 v 2 i = m 1 v 1 f + m 2 ( v 1 f + e v 2 i + e v 1 i )
e ( v 1 i + v 2 i ) = v 2 f − v 1 f e\left(v_{1 i}+v_{2 i}\right)=v_{2 f}-v_{1 f} e ( v 1 i + v 2 i ) = v 2 f − v 1 f
Separation and approach → \rightarrow → Separation and approach → \rightarrow → Separation and approach → \rightarrow → Separation and approach → \rightarrow → Collision
Impact And Collision L-5
Separation and approach
v 1 f = m 1 v 1 i − m 2 ( v 2 i + e v 2 i + e v 1 i ) ( m 1 + m 2 ) v_{1 f}=\frac{m_1 v_{1 i}-m_2\left(v_{2 i}+e v_{2 i}+e v_{1 i}\right)}{\left(m_1+m_2\right)} v 1 f = ( m 1 + m 2 ) m 1 v 1 i − m 2 ( v 2 i + e v 2 i + e v 1 i )
v 2 f = m 1 ( v 1 i + e v 1 i + e v 2 i ) − m 2 v 2 i m 1 + m 2 v_{2 f}=\frac{m_1\left(v_1 i+e v_1 i+e v_{2 i}\right)-m_2 v_{2 i}}{m_1+m_2} v 2 f = m 1 + m 2 m 1 ( v 1 i + e v 1 i + e v 2 i ) − m 2 v 2 i
Separation and approach → \rightarrow → Separation and approach → \rightarrow → Separation and approach → \rightarrow → Collision → \rightarrow → Collision
Impact And Collision L-5
Collision
m 1 = m 2 m_1=m_2 m 1 = m 2
Elastic collision e = 1 e=1 e = 1
Platic collision or totally inelastic collision e = 0 e=0 e = 0
m 1 v 1 i − m 2 v 2 i = ( m 1 + m 2 ) v 2 f m_1 v_{1 i}-m_2 v_{2 i}=\left(m_1+m_2\right) v_{2 f} m 1 v 1 i − m 2 v 2 i = ( m 1 + m 2 ) v 2 f
Separation and approach → \rightarrow → Separation and approach → \rightarrow → Collision → \rightarrow → Collision → \rightarrow → Collision
Impact And Collision L-5
Collision
e = 1 e=1 e = 1 , corresponds to
1 2 m 1 v 1 i 2 + 1 2 m 2 v 2 i 2 = 1 2 m 1 v 1 f 2 + 1 2 m 2 v 2 f 2 \frac{1}{2} m_1 v_{1 i}^2+\frac{1}{2} m_2 v_{2 i}^2=\frac{1}{2} m_1 v_{1 f}^2+\frac{1}{2} m_2 v_{2 f}^2 2 1 m 1 v 1 i 2 + 2 1 m 2 v 2 i 2 = 2 1 m 1 v 1 f 2 + 2 1 m 2 v 2 f 2
(for the head on collision)
Head on collision
Analysis is done assuming v 2 i = 0 v_{2 i}=0 v 2 i = 0
Separation and approach → \rightarrow → Collision → \rightarrow → Collision → \rightarrow → Collision → \rightarrow → Oblique Elastic Collision
Impact And Collision L-5
Collision
Even if v 2 i ≠ 0 v_{2 i} \neq 0 v 2 i = 0 ,
We can do a change of reference frames and study the motion x x x a frame moving with a constant velocity of v 2 i v_{2 i} v 2 i .
In this frame v 2 i = 0 v_{2 i}=0 v 2 i = 0
( v 1 i ⃗ ) (\vec{v_{1 i}}) ( v 1 i ) = v 1 i ⃗ \vec{v_{1 i}} v 1 i = -v 2 i ⃗ \vec{v_{2 i}} v 2 i
Collision → \rightarrow → Collision → \rightarrow → Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision
Impact And Collision L-5
Oblique Elastic Collision
Collision → \rightarrow → Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision
Impact And Collision L-5
Oblique Elastic Collision
Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision
Impact And Collision L-5
Oblique Elastic Collision
v 1 i 2 = v 1 f 2 + v 2 f 2 v_{1 i}^2=v_{1 f}^2+v_{2 f}^2 v 1 i 2 = v 1 f 2 + v 2 f 2
Three form right angle triangle.
v i f v_{i f} v i f has to be perpendicular to v 2 f v_{2 f} v 2 f .
Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision
Impact And Collision L-5
Oblique Elastic Collision
Body m 2 m_2 m 2 is very massive
m 2 ≫ m 1 m_2 \gg m_1 m 2 ≫ m 1
m 2 m_2 m 2 could be earth.
v 1 f = m 1 v 1 i − m 2 ( v 2 i + e v 2 i + e v 1 i ) ( m 1 + m 2 ) v_{1 f}=\frac{m_1 v_{1 i}-m_2\left(v_{2 i}+e v_{2 i}+e v_{1 i}\right)}{\left(m_1+m_2\right)} v 1 f = ( m 1 + m 2 ) m 1 v 1 i − m 2 ( v 2 i + e v 2 i + e v 1 i )
Divide RHS (Numerator & Denominator by m 2 \mathrm{m}_2 m 2 )
v i f = m 1 m 2 v 1 i − ( v 2 i + e v 2 i + e v 1 i ) ( m 1 m 2 + 1 ) I f v 2 i = 0 v_{i f}=\frac{\frac{m_1}{m_2} v_{1 i}-\left(v_{2 i}+e v_{2 i}+e v_{1 i}\right)}{\left(\frac{m 1}{m_2}+1\right) If v_{2 i}=0} v i f = ( m 2 m 1 + 1 ) I f v 2 i = 0 m 2 m 1 v 1 i − ( v 2 i + e v 2 i + e v 1 i ) .
Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Thank you
Impact And Collision L-5
Oblique Elastic Collision
Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Thank you → \rightarrow →
Impact And Collision L-5
Thank you
Oblique Elastic Collision → \rightarrow → Oblique Elastic Collision → \rightarrow → Thank you → \rightarrow → → \rightarrow →
Resume presentation
Impact And Collision L-5 Impact and Collision $\rightarrow$ $\rightarrow$ Impact and Collision $\rightarrow$ Impact and Collision $\rightarrow$ Impact and Collision