- Impulse of a force $\vec{F}$ during time internal from $(t_1 $ to ${t_2})$ $\rightarrow$$\vec{I}$
- $\vec{I}=$ $\int_{t_1}^{t_2} \vec{F} d t$
- If $\vec{F}$ is constant, $\vec{I}=\vec{F}\left(t_2-t_1\right)$.
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-06-chapter-02-work-energy-impulse-principles-conservation-of-momentum-l-2_6-sd3zqspo7c8-12.jpg)
- $\vec{F}=\frac{d \vec{P}}{d t}$ (rate of change of linear momentum $\vec{P}$).
- $\vec{F}dt=d\vec{P}$.
- $\int_{t_1}^{t_2}\vec{F}dt=\int_{P_1}^{P_2}d\vec{P}=\left(\overrightarrow{P_2}-\overrightarrow{P_1}\right) =\Delta \vec{p}\$
- $t_1 \rightarrow \overrightarrow{P_1}$
- $t_2 \rightarrow \overrightarrow{P_1}$
- Impulse of force $\vec{F}$ a particle from $t_1 $ to ${t_2}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-06-chapter-02-work-energy-impulse-principles-conservation-of-momentum-l-2_6-sd3zqspo7c8-13.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-06-chapter-02-work-energy-impulse-principles-conservation-of-momentum-l-2_6-sd3zqspo7c8-13a.jpg)