- $ \vec{a}=-g \hat{\jmath}, a_x=0, a_y=-g $
- $ \vec{v}_0=\left(v_0 \cos \theta_0\right) \hat{\imath}+\left(v_0 \sin \theta_0\right) \hat{\jmath} $
- $ \vec{v}_0$=(0,0) $ {x_0}=0$, $\{y_0}=0$
- x=$(v_0 t)=(v_0 \cos \theta_0) t $
- $ y=(v_0 \sin \theta_0) t-\frac{1}{2} g t^2 $
- **Eliminate t**
- $ v_x=v_0 \cos \theta_0 $
- $ v_y=v_0 \sin \theta_0-g t$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-04-chapter-03-planar-motion-motion-in-a-plane-lecture-3_4-gxd4tqd5kgu-517-2653.2.jpg)