→ \rightarrow → → \rightarrow → Frame of Reference, Motion in a Straight Line, Uniform Motion → \rightarrow → Graphical description of displacement v/s time → \rightarrow → Uniform Motion
Graphical description of displacement v/s time
Straight line equal distance in equal interval of time.
→ \rightarrow → Frame of Reference, Motion in a Straight Line, Uniform Motion → \rightarrow → Graphical description of displacement v/s time → \rightarrow → Uniform Motion → \rightarrow → Uniform Motion
Motion could be more complex
Car which starts from rest, starts to move, then it moves ot uniform motion,
Frame of Reference, Motion in a Straight Line, Uniform Motion → \rightarrow → Graphical description of displacement v/s time → \rightarrow → Uniform Motion → \rightarrow → Uniform Motion → \rightarrow → Average velocity
Graphical description of displacement v/s time → \rightarrow → Uniform Motion → \rightarrow → Uniform Motion → \rightarrow → Average velocity → \rightarrow → Unit of Average velocity
Average velocity
Average velocity = change in displacement change in time \text { Average velocity }=\frac{\text { change in displacement }}{\text { change in time }} Average velocity = change in time change in displacement
If the displacement over time interval
Δ t = Δ x \Delta t=\Delta x Δ t = Δ x
Then average velocity \text { Then average velocity } Then average velocity
\quad \quad = Δ x Δ t =\frac{\Delta x}{\Delta t} = Δ t Δ x
\quad V ˉ = x 2 − x 1 t 2 − t 1 \bar{V}=\frac{x_2-x_1}{t_2-t_1} V ˉ = t 2 − t 1 x 2 − x 1 .
Uniform Motion → \rightarrow → Uniform Motion → \rightarrow → Average velocity → \rightarrow → Unit of Average velocity → \rightarrow → Average velocity
Unit of Average velocity
Units of average velocity = Length Time = L T =\frac{\text { Length }}{\text { Time }} = \frac{L}{T} = Time Length = T L
S I = m s {SI} = \frac{m}{s} S I = s m
Another unit k m h r \frac{\mathrm{km}}{\mathrm{hr}} hr km
Uniform Motion → \rightarrow → Average velocity → \rightarrow → Unit of Average velocity → \rightarrow → Average velocity → \rightarrow → Slope of Line
Average velocity
Average velocity → \rightarrow → vector quantity motion along a straight line → \rightarrow → direction is given by sign of displacement.
v ˉ = x 2 − x 1 t 2 − t 1 \bar{v}=\frac{x_2-x_1}{t_2-t_1} v ˉ = t 2 − t 1 x 2 − x 1
Δ t = t 2 − t 1 \Delta t=t_2-t_1 Δ t = t 2 − t 1
P Q → Straight line P Q \rightarrow \text { Straight line } PQ → Straight line
Slope of line \text { Slope of line } Slope of line
Average velocity → \rightarrow → Unit of Average velocity → \rightarrow → Average velocity → \rightarrow → Slope of Line → \rightarrow → Instantaneous Velocity and Speed
Slope of Line
v ˉ \bar{v} v ˉ can be positive, negative and zero.
Unit of Average velocity → \rightarrow → Average velocity → \rightarrow → Slope of Line → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Instantaneous Velocity and Speed
Instantaneous Velocity and Speed
It Δ t → 0 Δ x Δ t = v \text { It }_{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=v \quad It Δ t → 0 Δ t Δ x = v Instantaneous velocity
rate of change of position with respect fo time.
Average velocity → \rightarrow → Slope of Line → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Uniform Motion
Instantaneous Velocity and Speed
Δ x Δ t → \frac{\Delta x}{\Delta t} \rightarrow Δ t Δ x → approach tangent to the x − t x-t x − t curve at t 1 t_1 t 1
If Δ t → 0. \text { If } \Delta t \rightarrow 0 . If Δ t → 0.
tangent/slope of x − t x-t x − t curve at t = t t=t t = t , gives velocity or instantaneous velocity at t = t 1 t=t_1 t = t 1
Slope of Line → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Uniform Motion → \rightarrow → Instantaneous Velocity and Speed
Motion could be more complex
Car which starts from rest, starts to move, then it moves at uniform motion,
Instantaneous Velocity and Speed → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Uniform Motion → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Uniform Motion
Instantaneous Velocity and Speed
Magnitude of Instantaneous Velocity = Instantaneous Speed.
Velocity may not be constant.
Rate of change of velocity with time as accelaration.
Instantaneous Velocity and Speed → \rightarrow → Uniform Motion → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Uniform Motion → \rightarrow → Negative Accelerant
Motion could be more complex
Car which starts from rest, starts to move, then it moves at uniform motion,
Uniform Motion → \rightarrow → Instantaneous Velocity and Speed → \rightarrow → Uniform Motion → \rightarrow → Negative Accelerant → \rightarrow → Displacement
Negative Accelerant
Instantaneous Velocity and Speed → \rightarrow → Uniform Motion → \rightarrow → Negative Accelerant → \rightarrow → Displacement → \rightarrow → Displacement
Displacement
x → t x \rightarrow t x → t
d x ⃗ d t = v ⃗ \frac{d \vec{x}}{d t}=\vec{v} d t d x = v
d x d t = v \frac{d x}{d t}=v d t d x = v
d v d t = a \frac{d v}{d t}=a d t d v = a
Uniform Motion → \rightarrow → Negative Accelerant → \rightarrow → Displacement → \rightarrow → Displacement → \rightarrow → Change of Velocity
Displacement
x → t x \rightarrow t x → t
d x d t = v \frac{d x}{d t}=v d t d x = v
x − t x-t x − t curve slope = v
∫ d x = ∫ v d t \int{ d x}=\int v d t ∫ d x = ∫ v d t
x 2 − x 1 x_2-x_1 x 2 − x 1
Area under v − t v-t v − t curve: displacement.
Negative Accelerant → \rightarrow → Displacement → \rightarrow → Displacement → \rightarrow → Change of Velocity → \rightarrow → Chain Rule
Change of Velocity
d v d t = a \frac{d v}{d t}=a d t d v = a
∫ d v = ∫ a d t \int d v=\int a d t ∫ d v = ∫ a d t
Slope of v − t v-t v − t curve gives a Area under a − t a-t a − t curve gives velocity → \rightarrow → change of velocity.
Displacement → \rightarrow → Displacement → \rightarrow → Change of Velocity → \rightarrow → Chain Rule → \rightarrow → Chain Rule
Chain Rule
If acceleration known as a funchon of x x x .
d v d t = a \frac{d v}{d t}=a d t d v = a
Chain Rule of Differentiation
d v d t = d v d x ⋅ d x d t = v d v d x \frac{d v}{d t} =\frac{d v}{d x} \cdot \frac{d x}{d t}= \frac{v d v}{d x} d t d v = d x d v ⋅ d t d x = d x v d v
= 1 2 d d x ( v 2 ) =\frac{1}{2} \frac{d}{d x}\left(v^2\right) = 2 1 d x d ( v 2 ) .
Displacement → \rightarrow → Change of Velocity → \rightarrow → Chain Rule → \rightarrow → Chain Rule → \rightarrow → Uniform Acceleration
Chain Rule
1 2 d d x ( v 2 ) = a \frac{1}{2} \frac{d}{d x}\left(v^2\right) =a 2 1 d x d ( v 2 ) = a
∫ 1 2 d ( v 2 ) = ∫ a d x \int \frac{1}{2} d\left(v^2\right) =\int a d x ∫ 2 1 d ( v 2 ) = ∫ a d x
1 2 v 2 ∣ 1 2 = ∫ a d x \left.\frac{1}{2} v^2\right|_1 ^2 =\int a d x 2 1 v 2 1 2 = ∫ a d x
= 1 2 ( v 2 2 − v 1 2 ) =\frac{1}{2}\left(v_2^2-v_1^2\right) = 2 1 ( v 2 2 − v 1 2 )
= ∫ a d x =\int a d x = ∫ a d x .
Change of Velocity → \rightarrow → Chain Rule → \rightarrow → Chain Rule → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
a a a is constant relation between displacement x x x , time taken t t t , initial velocity v 0 v_0 v 0 , final velocity v v v and acceleration a a a .
acceleration = a ← {a}\leftarrow a ← constant
Chain Rule → \rightarrow → Chain Rule → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
a = v − v 0 t a=\frac{v-v_0}{t} a = t v − v 0
v = v 0 + a t v=v_0+a t v = v 0 + a t
Area of triangle = 1 2 ( v − v 0 ) t \frac{1}{2}(v-v_0) t 2 1 ( v − v 0 ) t
displacement
Area under v − t {v-t} v − t curve
Area = v 0 t + 1 2 ( v − v 0 ) t =v_0 t+\frac{1}{2}\left(v- v_0\right) t = v 0 t + 2 1 ( v − v 0 ) t
displacement = v 0 t + 1 2 a t 2 v_0 t+\frac{1}{2} a t^2 v 0 t + 2 1 a t 2
Chain Rule → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
a a a is constant relation between displecemend x x x , time taken t t t , initial velocity v 0 v_0 v 0 , firal velocity v v v and acceleration a a a .
acceleration = a ← {a}\leftarrow a ← constant
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
a = v − v 0 t a=\frac{v-v_0}{t} a = t v − v 0
v = v 0 + a t v=v_0+a t v = v 0 + a t
1 2 ( v − v 0 ) t \frac{1}{2}(v-v_0) t 2 1 ( v − v 0 ) t
displacement
Area under v − t {v-t} v − t curve.
Area = v 0 t + 1 2 ( v − v 0 ) t =v_0 t+\frac{1}{2}\left(v- v_0\right) t = v 0 t + 2 1 ( v − v 0 ) t .
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
x = v 0 t + 1 2 a t 2 x =v_0 t+\frac{1}{2} a t^2 x = v 0 t + 2 1 a t 2
x = ( v + v 0 2 ) t x =\left(\frac{v+v_0}{2}\right) t x = ( 2 v + v 0 ) t
x = ( v + v 0 ) 2 ( v − v 0 ) a x =\frac{\left(v+v_0\right)}{2} \frac{\left(v-v_0\right)}{a} x = 2 ( v + v 0 ) a ( v − v 0 )
x = v 2 − v 0 2 2 a x =\frac{v^2-v_0^2}{2 a} x = 2 a v 2 − v 0 2
v 2 = v 0 2 + 2 a x v^2 =v_0^2+2 a x v 2 = v 0 2 + 2 a x .
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
a = v − v 0 t a=\frac{v-v_0}{t} a = t v − v 0
v = v 0 + a t v=v_0+a t v = v 0 + a t
1 2 ( v − v 0 ) t \frac{1}{2}(v-v_0) t 2 1 ( v − v 0 ) t
displacement
Area under v − t {v-t} v − t curve
Area = v 0 t + 1 2 ( v − v 0 ) t =v_0 t+\frac{1}{2}\left(v- v_0\right) t = v 0 t + 2 1 ( v − v 0 ) t
displacement
= v 0 t + 1 2 a t 2 =v_0 t+\frac{1}{2} a t^2 = v 0 t + 2 1 a t 2 .
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
x = v 0 t + 1 2 a t 2 x =v_0 t+\frac{1}{2} a t^2 x = v 0 t + 2 1 a t 2
x = ( v + v 0 2 ) t x =\left(\frac{v+v_0}{2}\right) t x = ( 2 v + v 0 ) t
x = ( v + v 0 ) 2 ( v − v 0 ) a x =\frac{\left(v+v_0\right)}{2} \frac{\left(v-v_0\right)}{a} x = 2 ( v + v 0 ) a ( v − v 0 )
x = v 2 − v 0 2 2 a x =\frac{v^2-v_0^2}{2 a} x = 2 a v 2 − v 0 2
v 2 = v 0 2 + 2 a x v^2 =v_0^2+2 a x v 2 = v 0 2 + 2 a x .
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration
v = v 0 + a t v=v_0 + a t v = v 0 + a t ⟶ ( x − x 0 ) \longrightarrow(x - x_0) ⟶ ( x − x 0 ) missing
x = v 0 t + 1 2 a t 2 x=v_0 t+\frac{1}{2} a t^2 x = v 0 t + 2 1 a t 2 ⟶ v \longrightarrow v ⟶ v missing
v 2 = v b 2 + 2 a x v^2=v_b^2+2 a x v 2 = v b 2 + 2 a x ⟶ t \longrightarrow t ⟶ t missing
Valid only if a = a= a = constant
x → x \rightarrow x → displacement
x 0 ≠ 0 x_0 \neq 0 x 0 = 0
In above formulae x 0 = 0 x_0=0 x 0 = 0 .
If x 0 ≠ 0 → x x_0 \neq 0 \rightarrow x x 0 = 0 → x replaced by ( x − x 0 ) (x-x_0) ( x − x 0 ) .
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Free Fall
Sign of a a a
If velocity increasing in direction of positive x , x, x ,
a a a is positive.
If velocity decreasing in direction of positive x x x ,
a a a is negative (retardation).
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Free Fall → \rightarrow → Free Fall
Free Fall
Body falling under influence of gravity near earth's surface acceleration is constant = g =g = g from the body toward the surface of earth.
Uniform Acceleration → \rightarrow → Uniform Acceleration → \rightarrow → Free Fall → \rightarrow → Free Fall → \rightarrow → Free Fall
Free Fall
g = 9.8 m s 2 g = 9.8 \frac{m}{s^2} g = 9.8 s 2 m
or
g = 10 m s 2 g = 10 \frac{m}{s^2} g = 10 s 2 m
-ve sign downward directon.
+ve sign upward diredton.
Uniform Acceleration → \rightarrow → Free Fall → \rightarrow → Free Fall → \rightarrow → Free Fall → \rightarrow → Thank You
Free Fall
Free Fall → \rightarrow → Free Fall → \rightarrow → Free Fall → \rightarrow → Thank You → \rightarrow →
Thank You
Free Fall → \rightarrow → Free Fall → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Frame Of Reference Motion In A Straight Line Uniform L-1 Frame of Reference, Motion in a Straight Line, Uniform Motion $\rightarrow$ $\rightarrow$ Frame of Reference, Motion in a Straight Line, Uniform Motion $\rightarrow$ Graphical description of displacement v/s time $\rightarrow$ Uniform Motion