- If $H=I^2 R t$, where, $I$ is current, $R$ is resistance, $t$ is time, and $H$ Heat generate. Error in measurements of I, R and t are 2%, 3% and 1%. Find relative error in measurement of $H$ ?
- $\frac{\Delta H}{H}=\frac{2 \Delta I}{I}+\frac{\Delta R}{R}+\frac{\Delta t}{t}$
- $ \frac{\Delta H}{H} \times 100 $%$=2 \frac{\Delta I}{I} \times 100 $%$+\frac{\Delta R}{R} \times 100 $%
- $=2 \times 2 $%+3 %+1 % = 8 %
- Error in $ \Delta H(\text { in })$ % $= \pm 8 $%
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-02-chapter-04-accuracy-and-precision-of-measuring-instruments-lecture-4_4-2ldkopn9kbi-08.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-02-chapter-04-accuracy-and-precision-of-measuring-instruments-lecture-4_4-2ldkopn9kbi-09.jpg)