- $\left[L^0 M^0 T\right]=\left[M T^{-2}\right]^\alpha[L]^\beta\left[m L^{-3}\right]^\gamma$
- Equate powers of $L, M, T$ separately.
- L: $0=\beta-3 \gamma$
- M: $0=\alpha+\gamma$
- T: $ 1=-2 \alpha $
- $\alpha=-\frac{1}{2}$, $\gamma=\frac{1}{2},$ $\beta =\frac{3}{2}$
- $ T \propto S^\alpha r^\beta \rho^\gamma $
- $T=k S^\frac{-1}{2} r^\frac{3}{2} \rho^{\frac{1}{2}} $ = k $\sqrt{\frac{r^3 \rho}{S}}$.
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-02-chapter-02-dimensions-of-physical-quantities-dimensional-analysis-l-2_4-85pbnln_0f4-19.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-02-chapter-02-dimensions-of-physical-quantities-dimensional-analysis-l-2_4-85pbnln_0f4-20.jpg)