- $(3,6)(4,5),(5,4) (6,3)$.
- $
P\left(E_1\right)=\frac{4}{36}=\frac{1}{9}
$
- Let $E_2$ be the event that the sum in 6 primitives are $(1,5),(2,4),(3,3),(4,2),(5,1)$
- And $\therefore P\left(\bar{E}_2\right)=\frac{5}{36}$
- We know that A starts the game.
- $\therefore$ A finishes the game if
A throws 9 first home $\frac{1}{9}$
- A throws other than 9 then $B$ throws other than 6 then if thrown 9
- $
\frac{8}{9} \times \frac{31}{36} \times \frac{1}{9}
$
- $
\begin{aligned}
& \frac{8}{9} \times \frac{31}{36} \times \frac{8}{9} \times \frac{31}{36} \times \frac{1}{9} \\
= & \frac{1}{9} \times\left(\frac{8 \times 31}{9 \times 36}\right)^2
\end{aligned}
$