- Let us consider one theoretical expt. (Hypothetical Suppose an hypothetical sequence of tosses of a coin results in the following outcomes:
- HHHT, HHHT, HHHT, ......
- We want to find the prob. of head
- $
\begin{aligned}
& \text { (PH) } \quad \frac{a}{A} \rightarrow \frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{6}{8}, \\
& \frac{7}{9}, \frac{8}{10}, \frac{9}{11}, \frac{9}{12}, \ldots . \\
&
\end{aligned}
$
- So we can express
- $ \frac{a_n}{n} \quad =\frac{3 k}{4 k}, \text { of } n=4 k$
- $ =\frac{3 k}{4 k-1},\quad \text { of } n=4 k-1$
- $ =\frac{3 k-1}{4 k-2}, \quad \text { of } n=4 k-2$
- $ =\frac{3 k-2}{4 k-3} .\quad \text { of } n=4 k-3 $ $\qquad$ $[\because k=1,2,........]$