- $
\begin{aligned}
& \sum p\left(x_i\right)=1 \\\\
& \Rightarrow 10 k^2+9 k=1 \Rightarrow 10 k^2+9 k-1=0 \\\\
& \Rightarrow(10 k-1)(k+1)=0 \Rightarrow k=\frac{1}{10},-1
\end{aligned}
$
- $k=-1$ is not possible.
- So the correct value is $k=\frac{1}{10}$
- Then the prob. dist" of $X$ is
- $ P(X=-3)=\frac{1}{50}, P(X=-2)=\frac{1}{10}, P(X=-1)=\frac{1}{5} $
- $ P(X=0)= \frac{3}{10}, P(X=1)=\frac{1}{5}, P(X=2)=\frac{1}{10}, $
- $ P(X=3)=\frac{7}{100}, P(X=4)=\frac{1}{100} $