###
Probability Some Problems On Probability L-4
###
Probability
lecture-4
###
Probability Some Problems On Probability L-4
###
Problem-1
- 1. Let $A$ and $B$ be any two events with - $P\left(A^c\right)=0.3, P(B)=0.4, P(A-B)=0.5$. Find $P\left(B \mid A \cup B^C\right)$. - solution: $\quad P\left(B \mid A \cup B^c\right)=\frac{P\left(B \cap\left(A \cup B^c\right)\right)}{P\left(A \cup B^c\right)}$ - $\text { Numerator: } P\left((B \cap A) \cup\left(B \cap B^C\right)\right)$ - $= P((B \cap A) \cup \phi)=P(A \cap B)$ - $ A=(A-B) \cup(A \cap B)$ - $\Rightarrow P(A)=P(A-B)+P(A \cap B)$ - $\Rightarrow P(A \cap B)=P(A)-P(A-B)=0.7-0.5=0.2$
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/a553b4ea-57b9-469d-40b1-6a654d4f6200/public)
###
Probability Some Problems On Probability L-4
###
Solution
- $\text { Denominator } =P\left(A \cup B^c\right)$ - $=P(A)+P\left(B^c\right)-P\left(A \cap B^c\right)$ - $ =0.7+0.6-0.5=0.8$ - So, $ ~ $ $P\left(B \mid A \cup B^c\right)=\frac{0.2}{0.8}=\frac{1}{4}=0.25$
###
Probability Some Problems On Probability L-4
###
Problem-2
- Let $A$ and $B$ be any two events with $P(A \cup B)=0.7$ $P(A)=0.5, P(B)=0.3$. Find $P\left(A \mid B^c\right)$. - Solution: - $P\left(A \mid B^c\right)=\frac{P\left(A \cap B^c\right)}{P\left(B^c\right)}$ - From the addition rule - $P(A \cup B)= P(A)+P(B)-P(A \cap B)$ - $\Rightarrow P(A \cap B) =P(A)+P(B)-P(A \cup B)$ - =0.5+0.3-0.7=0.1
###
Probability Some Problems On Probability L-4
###
Solution
- $ P(A)=P(A \cap B)+P\left(A \cap B^c\right)$ - $ \Rightarrow \quad P\left(A \cap B^c\right)=P(A)-P(A \cap B)$ - = 0.5-0.1=0.4 - So, $ ~ $ $P\left(A \mid B^c\right)=\frac{0.4}{0.7}=\frac{4}{7}$.
###
Probability Some Problems On Probability L-4
###
Problem-3
- Let $A$ and $B$ be two events with $P(A)=0.5$, $P(A \cap B)=0.2$ and $P\left(A \mid B^C\right)=04$. Find $P(\beta)$. - Solution : - $ P\left(A \mid B^C\right)=\frac{P\left(A \cap B^C\right)}{P\left(B^C\right)}=\frac{P(A)-P(A \cap B)}{1-P(B)}$ - $ \Rightarrow \quad 0.4=\frac{0.5-0.2}{1-P(B)} \Rightarrow 1-P(B)=\frac{3}{4}$ - $ \Rightarrow P(B)=\frac{1}{4}$
###
Probability Some Problems On Probability L-4
###
Problem-4
- An urn has 4 coins. Three coins are fair and one coin is biased. The probability of head for the biased coin is $\frac{3}{4}$. A coin is drawn at random from the urn and lossed. What is the probability that $a$ head is observed? If a head is observed what is the probability that the biased coin was drawn?
###
Probability Some Problems On Probability L-4
###
Solution
- Solution : Let, $H$ be the event that $a$ 'head' is observed. Let $E$ be the event that a biased coin is drawn - F $\longrightarrow \text { a fair coin is drawn }$ - $P(H \mid E)=\frac{3}{4}, P(H \mid F)=\frac{1}{2}$ - $P(E)=\frac{1}{4} P(F)=\frac{3}{4}$ - $P(H) =P(H \mid E) P(E)+P(H \mid F) P(F)$ - $=\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{3}{4}=\frac{9}{16}$ - $P(E \mid H) =\frac{P(H \mid E) P(E)}{P(H)}=\frac{\frac{3}{4} \cdot \frac{1}{4}}{\frac{9}{16}}=\frac{1}{3}$ .
###
Probability Some Problems On Probability L-4
###
Problem-5
- A pair of fair dice is rolled until a sum of 7 appears. Find the probability that the sum 7 appears first on the $3^{\text {rd }}$ roll. - solution : E = Sum is seven $\rightarrow\{(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}$ - $P(E)=\frac{6}{36}=\frac{1}{6}=p$
###
Probability Some Problems On Probability L-4
###
Solution
- $P$ (sum appears first on the $3^{\text {rd }}$ roll) - $=P\left(\text { ( } E^c \text { occurs on } I^{s t} \text { roll) } \cap\left(E^c \text { occurs on } II^{\text {nd }} \text { role}\right)\right.$ - $\cap\left(E\right.$ occurs on $\mathbb{III}^{\text {rd }}$ role $\left.)\right)$ - $=P\left(E^c\right) P\left(E^c\right) P(E)=\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}=\frac{25}{216}$
###
Probability Some Problems On Probability L-4
###
Problem-6
- Let $A$ and $B$ be two events which are independent with - $P(A-B)=\frac{3}{25}, P(8-A)=\frac{8}{25}$. Further $P(A)>\frac{1}{2}$. Find $P(B)$. - Solution : $\quad P(A-B)=P\left(A \cap B^c\right)=\frac{3}{25}$ - $P(B-A)=P\left(B \cap A^C\right)=\frac{8}{25}$
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/a553b4ea-57b9-469d-40b1-6a654d4f6200/public)
###
Probability Some Problems On Probability L-4
###
Solution
- First we prove that of $A$ and $B$ are independent then, $A$ and $B^C$ are also independent. - $P\left(A \cap B^c\right) =P(A)-P(A \cap B)=P(A)-P(A) P(B)$ - $=P(A)(1-P(B))=P(A) P\left(B^C\right)$ - Similarly we can prove that $A^C$ and $B$ are independent. So we have - P(A) and P$\left(B^c\right)=\frac{3}{25} \quad \text { Let } p=P(A)$
###
Probability Some Problems On Probability L-4
###
Solution
- $\Rightarrow \quad P(1-q)=\frac{3}{25} \cdots(1) \quad q=P(B)$ - $ P(B) P\left(A^c\right)=(1-p) q=\frac{8}{25} \cdots(2)$ - (2) - (1) gives $q-p=\frac{1}{5} \ldots$ (3) - Using of from (3) in (2), we get,$(1-p)\left(p+\frac{1}{5}\right)=\frac{8}{25}$ - $-p^2+p-\frac{p}{5}+\frac{1}{5}=\frac{8}{25}$ - $-p^2+\frac{4 p}{5}-\frac{3}{25}=0 \Rightarrow-\left(\frac{1}{5}-p\right)\left(\frac{3}{5}-p\right)=0$ - $\Rightarrow p=\frac{1}{5} \text { or } \frac{3}{5} \text {. Since } p>\frac{1}{2} \text {, we take }$ ,$P(A)=\frac{3}{5} \Rightarrow P(B)=\frac{4}{5}$
###
Probability Some Problems On Probability L-4
###
Problem-7
- Two fair dice are tossed together. What is the probability that the product of the numbers is divisible by 6 ? - Solution: The total number of outcomes $=36$
###
Probability Some Problems On Probability L-4
###
Solution
- $A \rightarrow$ the product is divisible by 6 - =(1,6),(2,3),(2,6),(3,2),(3,4),(3,6), - (4,3),(4,6),(5,6),(6,1),(6,2),(6,3), - (6,4),(6,5),(6,6) - $\rightarrow 15 \text { elements. }$ - $P(A)=\frac{15}{36}=\frac{5}{12}$
###
Probability Some Problems On Probability L-4
###
Problem-8
- In this problem what is the conditional probability that the sum of the numbers is at least 10 given that the product is divisible by 6 ? - Solution: $B \rightarrow$ sum is at least 10 . - $P(A)=\frac{15}{36}=\frac{5}{12}$ - $ B=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$ - $ P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{5 / 36}{5 / 12}=\frac{1}{3}$ .
###
Probability Some Problems On Probability L-4
###
Problem-9
- An experiment has two possible outcomes, the first occurs with prob. $p^2+p / 4$ and the second with prob. $\frac{3-p}{4}$. What is the value of $p$ ? - solution. - $ p^2+\frac{p}{4}+\frac{3-p}{4}=1 \Rightarrow p^2=\frac{1}{4}$ - $\Rightarrow p= \pm \frac{1}{2}$ - $p=\frac{1}{2} \longrightarrow$ the probabilities of two outcomes are $\frac{3}{8}$ and $\frac{5}{8}$ - $p=-\frac{1}{2} \longrightarrow$ the pribatilites of two outcomes are. $\frac{1}{8}$ and $\frac{7}{8}$
###
Probability Some Problems On Probability L-4
###
Problem-10
- Each of coefficients $a, b, c$ in the system of linear equations $\quad a x+b y=0$ - and b x+c y=0 - is determined by tossing a fair die. What is the probability that the system has nontrivial solutions? - Soln. The condition is $a c-b^2=0$ - {(1,1,1),(1,2,4),(4,2,1),(2,2,2) - (3,3,3),(4,4,4),(5,5,5),(6,6,6)} - $\rightarrow \text { cos } \rightarrow 8$ - $\text { Reqd Prb }=\frac{8}{6^3}=\frac{8}{216}=\frac{1}{27}$
###
Probability Some Problems On Probability L-4
###
Thank you