The following three axioms
P(⋃i=1∞Ei)=∑i=1∞P(Ei)
a,b,c are disjoint events
P(A∪B)=P(A)+P(B)
P(A∪B∪C)=P(A)+P(B)+P(C)
Let A and B be any two events. Then
P(A∪B)=P(A)+P(B)−P(A∩B)
Proof: We can write
A∪B=A∪(B−(A∩B))
So P(A∪B)=P(A)+P(B−(A∩B))
= P(A)+P(B)−P(A∩B)
E=F∪(E−F)
P(E)=P(F)+P(E−F)
So P(E−F)=P(E)−P(F)≥0
⇒P(E)≥P(F)
i.e probability is a monotone function.
3) E∪Ec=S
P(E)+P(Ec)=P(S)=1
⇒P(Ec)=1−P(E)
Extension to 3 events: A,B,C
P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C)
=P(A)+P(B)−P(A∩B)+P(C)
−P((A∩C)∪(B∩C))
=P(A)+P(B)+P(C)−P(A∩B)
−(P(A∩C)+P(B∩C)−P((A∩C)∩(B∩C)))
=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)
−P(B∩C)+P(A∩B∩C)
Let A1,A2,…,An be any events. Then
P(⋃i=1nAi)=∑i=1nP(Ai)−i<j∑∑P(Ai∩Aj)
+(i<j<k)∑∑∑kP(Ai∩Aj∩Ak)−⋯
+(−1)n+1P(⋂i=1nAi)
Proof: We will prove the relation (1) using the principle of mathematical induction.
P(1)
P(K)→P(K+1)
For n=1, the statement (1) becomes
P(A1)=P(A1) which always holds true.
Next we assume the statement (1) to be true for n=k. Then we prove it for n=k+1
P(⋃i=1k+1Ai)=P((i=1⋃kAi)∪Ak+1)
=P(⋃i=1kAi)+P(Ak+1)−P((⋃i=1kAi)∩Ak+1)
(by addition rule for two events)
=∑i=1kP(Ai)−i<j∑k∑kP(Ai∩Aj)+i<j<m∑k∑k∑kP(Ai∩Aj∩Am
−⋯+(−1)k+1P(⋂i=1kAi)+P(Ak+1)
−P(⋃i=1k(Ai∩Ak+1))
=∑i=1k+1P(Ai)−i<j∑k+1∑k+1P(Ai∩Aj)
+i<j<m∑k+1∑k+1∑k+1P(Ai∩Aj∩Am)−⋯
+(−1)k+2P(⋂i=1k+2Ai)
this shows that statement (1) is true for n=k+1.
Hence by the Principle of mathematical Induction the General addition rule holds for all n ( n is a positive integer).
(Using the general addition ).
Let A denote the event that the set of six cards contains at least one card of each suit .
Then Ac→ at least one suit does not appear in the set η six cards.
Let,
B1→ hearts do not appear
B2→ spades do not appear
B3→ clubs do not appear
B4→ diamonds do not appear
Then Ac=⋃i=14Bi
By general addition rule
P(Ac)=P(⋃i=14Bi)
=∑i=14P(Bi)−i<j∑4∑4P(Bi∩Bj)
+i<j<k∑4∑4∑4P(Bi∩Bj∩Bk)
−P(⋂i=14Bi)
P(Bi)=43×43×⋯×43=(43)6
P(Bi)=(43)6,i=1,2,3,4
P(B1∩B2)=(21)6,P(Bi∩Bj)=(21)6 6 terms
P(Bi∩Bj∩Bk)=(41)6,(1≤i<j<k≤4) 4 terms
P(⋂i=14Bi)=0
So,
P(Ac)=4×(43)6−6×(21)6+4(41)6=512317≈0.62
P(A)=1−P(A)=512195≈0.38