- Two distinct fair dies are rolled once.
- Let $X$ denote the absolute difference of the numbers shown on the upper faces of the two dice.
- Find the distribution of $X$ and Var(X).
- **Solution:**
- The possible values of $X$ (absolute difference) are $0,1,2,3,4,5$.
- The absolute difference is $0$ for
- $ \\{ (1,1), (2,2), (3,3),(4,4),(5,5),(6,6)\\}$
- So, $P(X=0)=\frac{6}{36}=\frac{1}{6}$
- The absolute difference is $1$ for
- $\\{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4)(5,6),(6,5)\\}$ $ ~ $ So, $P(X=1)=\frac{10}{36}=\frac{5}{18}$