CORNER POINT METHOD
STEPS:
→ FORMULATION OF LPP
(a) (i) Objective Function (To be Maximize or Minimize)
z=ax+by
(ii) Linear Constraints
(b) Graphical Representation of Constraints to obtain feasible region (open/closed)
(c) Corner points of feasible region
If a1,a3,a2,…,an are constraints and
x1,x2,x3,…,xn are variables (called decision variables), then linear function
z=a1x1+a2x2+a2x3+⋯+anxn
Which is to be optimized is called the objective function.
It is always non negative.
Type | No. of cake | flour | fat |
---|---|---|---|
I | x | 300g | 15g |
II | y | 150g | 30g |
z=x+y | 300x+150y⩽7500 | 15x+30y⩽600g |
Constraints are
2x+y⩽50…(i)
x+2y⩽40…(ii)
Associated equation for (i) & (ii) is
2x+y=50…(i)
x+2y=40…(ii)
for (i) put 25x+50y=1
for (ii) 40x+20y=1
origin test for (i)
2×0+0=0⩽50 (True).
origin test for (ii)
0+2×0=0⩽40 (True)
z=x+y
ZA=25+0=25
ZB=20+10=30
ZC=0+20=20
Z is maximum at B(20,10)
∴no. of Ist cake = 20
IInd cake = 10
Items | no. | Cost | Profit |
---|---|---|---|
tables | x | 500 | 50 |
chairs | y | 100 | 15 |
x=y⩽ 60 | 500x+100y⩽10000 | z=50x+15y |
Subject to constraints
5x+y⩽100 (Investment constraints)
x+y⩽60 (storage constraints)
x⩾0,y⩾0 (non-negative constraints)
Linear constraints an
5x+y⩽100…(i) x+y⩽60…(ii)
Associated equation for (i) & (ii)
5x+y=100⇒20x+100y=1
x+y=60⇒60x+60y=1
origin test for (i) 5 ×0+0=0⩽ 100(true)
∴ origin lies in the solution region of (i) origin test for (ii) 0+0⩽60(true)
∴ origin lies in the solution region 4z=50x+15y
Corner Points are A(20,0) B(10,50) C(0,60)
ZA=50×20+15×0 =1000
ZB=50×10+15×50 =1250
Zc=50×0+15×60=900
Maximum value of z=1250 at B(10,50)
∴ no. of tables =10 no. of chairs = 50
Type of trunk | no. of trunk | Machine(A) | Machine(B) | Profit |
---|---|---|---|---|
I | x | 3 | 3 | 30 |
II | y | 3 | 2 | 25 |
3x+3y⩽18 | 3x+2y⩽15 |
Total Profit, z=30x+25y (Profit function) Maximize
subject to constraints
Subject to constraints
3x+3y⩽18 ie. x+y⩽6…(i)
3x+2y⩽15…(ii)
x,y⩾0
Associated equation for (i) & (ii)
x+y=6⇒6x+6y=1
3x+2y=15⇒5x+7⋅5y=1
Origin test for (i) & (ii)
for(i) 0+0=0⩽6 (True).
∴ origin lies in the solution region of (i)
origin test for (ii)
3×0+2×0=0⩽15( true)
∴ origin lies in the solution region for (ii)
3 z=30x+25y
Corner points A(5,0), B(3,3), C(0,6)
ZA=30×5+25×0 =150
ZB=30×3+25×3 =165
ZC=30×0+25×6 =150
So, maximum values of profit function
Z=30x+25y occurs at B(3,3)
∴Zmax =165 at B(3,3)
∴ Manufacturer should produce 3 trunks of each type to get maximum profit of Rs. 165.