Solve the LPP graphically
Minimize & Maximize
z=3x+9y (objective)
Subject to constraints
x+3y⩽60 - (i)
x+y⩾10 - (ii)
x⩽y- (iii)
x⩾0,y⩾0 - (iv)
Solve: Associated Equation
x+3y=60 - (i) x+y=10 - (ii) x=y - (iii)
from (i) x+3y=60
put y=0⇒x=60
x=0⇒y=20
∴ points are (60, 0) & (0,20)
from (ii)
x+y=10
put y=0⇒x=10
x=0⇒y=10
∴ points an (10,0) &(0,10)
from (iii) x=y
y=0⇒x=0
x=1⇒y=1
∴ points are (0,0) &(1,1)
origin test
0+3×0=0<60(T)
0+0=0>10(F) 0=0(T)
for x=y (1,2)
1<2
(10,20) (T)
10<20 (T)
from (i) & (iii)
x+3y=60
⇒x+3x=60
(x=y)
⇒4x=60
⇒x=15
∴y=15
B(15,15)
from (ii) & (iii)
x+y=10
⇒x+x=10
(x=y)
⇒2x=10
⇒x=5
∴y=5
∴A(5,5)
∴ Corner point of feasible region ABCD are
A(5,5),B(15,15),
C(0,20),D(0,10)
value of Z=3x+9y at Corner points are
ZA=3×5+9×5=60 (smallest)
ZB=3×15+9×15=45+135=180 (largest)
ZC=3×0+9×20=0+180=180 (largest)
ZD=3×0+9×10=0+90=90
Since feasible region is bounded region
∴Zmin. =60 at A(5,5)
Since largest value at two points B and C.
∴Zmax =180 lies on the line BC.
i.e. Problem has multiple optimal solution.
Solve LPP graphically
Minimize
Z=5x+3y
Subject to
x+y=6
x⩽4
y⩽5
x⩾0,y⩾0
Solution: : Associated equation for given constraints are
x+y=6…(i)
x=4…(ii)
y=5 …(iii)
from (i) x+y=6
put y=0⇒x=6
x=0⇒y=6
∴ points are (6,0) & (0,6)
from (ii) x=4 is a line parallel to y-axis intersect- x-axis at- (4,0)
from (iii) y=5 is a line parallel to x-axis intersect y axis at (0,5)
feasible region is line AB with corner points
A(4,2) & B(1,5)
∴ZA=5x+3y
=5×4+3×2
=26
Solve the LPP graphically
Minimize Z=3x+5y
Subject to
x+2y⩾10
x+y⩾6
3x+y⩾8
x⩾0,y⩾0
Solve: Associated equation for given constraints are
x+2y=10…(i)
x+y=6 …(i)
3x+y=8…(iii)
from (i) x+2y=10
put
y=0⇒x=10
x=0⇒y=5
∴ points and (10,0) & (0,5)
from (ii) x+y=6
put x=0⇒y=6
y=0⇒x=6
∴ points are (6,0) & (0,6)
from (iii)
3x+y=8
put y=0⇒x=8/3
Put y=2,x=2
put x=0⇒y=8
∴ points are (8 / 3,0) & (0,8),(2,2)
∴ Corner points of the feasible region are
A(10,0), B(2,4),
C(1,5) & D(0,8)
ZA=3×10+5×0=30
ZB=3×2+5×4=26 (smallest)
ZC=3×1+5×5=28
ZD=3×0+5×8=40 (Largest)
3x+5y<26
3x+5y=26 (Draw this line)
line 3x+5y=26
have no common points with feasible region
∴Zmin =26 at B(2,4)