- $\vec{a}=i-j, \vec{b}=j-k$ \& $\vec{c}=k-i$. If $\vec{d}$ is unit vector such that $\vec{a} \cdot \vec{d}^2=0=\left[\vec{b} \vec{c} \vec{d}\right]$ Find $\vec{d}$.
- Solution:
- $ \vec{d}=x i+y j+z k $
- $\vec{a} \cdot \vec{d}=0 $
- $1 \cdot x-y. 1=0 \Rightarrow x=y $