If a, b, c and d are unit vectors such that (a×b)⋅(c×d)=1 & a⋅c=1/2 then
(P) a, b and c are non-coplanar
(Q) a, b and d are non-coplanar
(R) b and d are non-parallel
(S) a and d are parallel and b and c are parallel.
∣a∣=∣b∣=∣c∣=∣d∣=1
Let θ be the angle bet (a×b) and (c×d)
θ1 be the angle between a and b
θ2 be the angle between c and d
I=(a×b)⋅(c×d)=∣a×b∣∣c×d∣cosθ=∣a∣∣b∣sinθ1∣c∣∣d∣sinθ2cosθ
=sinθ1sinθ2cosθ
θ1=θ2=2π
θ=0 ⇒a⊥b,c⊥d,(a×b)∣(c×d)
(a×b)=k(c×d)−⋯∗
(a×b)⋅c=k(c×d)⋅c=0
⇒[abc]=0⇒ a, b and c one couple
(a×b)⋅d=k(c×d)⋅d=0
⇒[abd]=0⇒ a, b and d one
Suppose
b∣∣d
⇒b=kd
=±d (d and b are unit vectors )
1=(a×b)⋅(c×d2)⇒±1=(a×b)⋅(c×b)
⇒[a×bc,b]=±1=[cba×b]
⇒c⋅(b×(a×b))=±1⇒c(a−(b⋅a)b)=±1
⇒c⋅a=±1⇒←
a∣a and b∣c
a⋅d=1=b⋅c
a=±d and b=±c
(a×b)⋅(c×d)=(a×b)(b×a)=±1
(a×b)⋅(c×d)=(a×b)(b×a)=±1
(R) is correct
Let a, b and c are three non-coplanar vectors.
(a+b+c)⋅[(a+b)×(a+c)] equals
(P) 0
(Q) [cbc]
(R) 2[cbc]
(S) −[abc]
(a+b+c)⋅[(a+b)×(a+c)]
=(a+b+c)⋅[a×a+b×a+a×c+b×c]
=a[a×a+b×a+a×c+b×c]+b[a×a+b×a+a×c+b×c]+c[a×a+b×a+a×c+b×c]
=[aaa]+[aba]+[aac]
+[abc]+[baa]+[bba]
+[bac]+[bbc]+[caa]
+[cba]+[cac]+[cbc]
=[abc]+[bac]+[cba]
=[abc]−[abc]−[abc]
(S) is correct.
Let a,b&c be three non-zero vectors such that no two of them are collinear & (a×b)×c=31∣b∣∣c∣a. If θ is the angle between n b&c then find the value of θ.
Solution:
(a×b)×c=31∣b∣∣c∣a
−c×(a×b)=31∣b∣∣c∣a
−(c⋅b)a+(c⋅a)b=31∣b∣∣c∣a.
(c⋅a)b=(31∣b∣∣c∣+c⋅b)a
c⋅a=0
and (31∣b∣∣c∣+∣b∣∣c∣cosθ)=0
⇒cosθ+31=0
→cosθ=3−1
sinθ−38=322
a,b , c are vector such that ∣b∣=∣c∣
Show that [[(a+b)×(a+c)]×(b×c)]⋅(b+c)=0
Solution:
(a+b)×(a+c)=a×a+b×a+a×c+b×c
[(a+b)×(a+c)]×(b×c)=[b×a+a×c+b×c]×(b×c)
=(b×a)×(b×c)+(a×c)×(b×c)
=[(b×a)⋅c]b−[(b×a)⋅b]c+[(a×c)⋅c]b−[(a×c)⋅b]c
=[bac]b−[bab]c+[acc]b−[acb]c
=[bac](b−c)
[[(a+b)×(a+c)]×(b×c)]⋅(b+c)
=[bac](b−c)⋅(b+c)
=[bac](b⋅b+cb−cb−c⋅c)
=[bac](∣b∣2−∣c∣2)=[bac]0=0
Solution:
d=xi+yj+zk
a⋅d=0
1⋅x−y.1=0⇒x=y
[bcd]=0
0−1x10y−11z=0
⇒2x+z=0⇒z=−2x
∣α∣=1=x2+y2+z2
x2+y2+z2=1⇒x2+x2+4x2=1
6x2=1⇒1/6
x±61⇒1/6
⇒xi+yj+zk=xi+xj+(−2x)k =±61(i+j−2k)
Which of the following statements are meaningful?
(P) u⋅(v×w)
(Q) (u⋅v)⋅ω
(R) (u⋅v)ω
(s) u×(v⋅w)
Answer:
(P) and (R) are meaningful.