Two adjacent sides of parallelogram are given by
AB=2i+10j+11kandAD=−i+2j+2k
The side AD is rotated by an acute angle θ in the plane of parallelogram so that AD becomes AD′.
If AD′ makes a right angle with side AB, then what is the value of the cosine of the angle θ ?
cosθ= ?
AB⋅AD=AB∣∣AD∣cos(η)
cosη=∣AB∣∣AD∣AB⋅AD=225940=4540
=98
cosη=98,cos2η+sin2η=1
η+θ=90∘
cos(θ)=cos(90∘−η)=sin(η)=917
Given 3 points whose position vectors are
xi+yj+zk,
i+zj&−i−j.
Find the condition for which these points are collinear.
OA=xi+yj+zk,
OB=i+zj,
OC=−i−j,
AB=OB−DA, =(1−x)i+(z−y)j−zk,
AC=OC−OA, =(−1−x)i+(−1−y)j−zk,
Find the cosine of the angle between vectors p&q such that
2p+q=i+j&p+2q=i−j.
Solution:
3p+3q=2ip−q=2j
p+q=32i and 2p=32i+2j2q=32i−2j
4p⋅q=94−4=9−32⇒p⋅q=9−8
∣p∣2=364×10∣p∣=310
∣q∣2=q10∣q∣=310
cosθ=∣p∣∣q∣p⋅q=10/x−81d=5−4.
θ=cos−1(5−4)
Determine the values of c such that for all real x, the vectors cxi−6j+3k and xi+2 j+2 c x k make an obtuse angle with each other.
Solution:
If θ is an angle between these vectors
cosθ
=x2+4+4c2x2c2x2+36+9(cxi−6j+3k)⋅(xi+2j+2cxk)
=(1+4c2)x2+4c2x2+45cx2+6cx−12.
cosθ<0,∣cosθ∣⩽1
(1+4c2)x2+4c2x2+45cx2−12+6cx<0,∀x∈R .
cx2+6cx−12<0
c<0 and (6c)2−4c(−12)<0
⇔c<0 and 36c2+48c<0
⇔c<0 and 12c(3c+4)<0
⇔c<0 and 3c+4>0
⇔c<0 and c>−34
⇔34<c<0.
If a & b are two unit vectors such that a+2b & 5a−4b are perpendicular to each other then find the angle between a & b.
Solution:
(a+2b)⋅(5a−4b)=0.∣a∣=1−∣b∣
⇔5a⋅a−8b⋅b+(10−4)a⋅b=0a⋅a=1
⇔5−8+6a⋅b=0
⇔a⋅b=63=21
⇔∣a∣1∣b∣1cosθ=21
⇔θ=cos−1(1/2)=60∘
If a,b & c are unit vectors, then find ∣a−b∣2+∣b−c∣2+∣c−a∣2⩽ ?
Solution:
0⩽∣a−b∣2=(a−b)⋅(a−b)
=∣a∣2+∣b∣2−2a⋅b
=2(1−a⋅b)
1−a⋅b≥0−1⩽a⋅b⩽1
∣a−b∣2+∣b−c∣2+∣c−a∣2
=2(∣a∣2+∣b∣2+∣c∣2) \
−2(a⋅b+b⋅c+c⋅a)
Solution:
a⋅b=0⇒a⊥ba⋅c=0⇒a⊥cb×ca∣b×c⇒a=k(b×c)1=∣a∣=∣k(b×c)∣=∣k∣∣b×c∣
b & c angle is π/6
∣b×c∣=∣b∣∣c∣sin6π=sin6π=21
1=∣k∣21
∣k∣=2
k=±2
a=±2(b×c).