- Given 3 points whose position vectors are
- $x i+y j+z k, $
- $i+z j \quad \\&-i-j \text {. }$
- Find the condition for which these points are collinear.
- $ \overrightarrow{O A}=x i+y j+z k $,
- $\overrightarrow{O B}=i+z j $,
- $ \overrightarrow{O C}=-i-j $,
- $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{D A} $, $ =(1-x) i+(z-y) j-z k $,
- $ \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A} $, $ =(-1-x) i+(-1-y) j-z k$,