Let G be the centroid of △ABC & G1 be the centroid of △A1B1C1 Show that AA1+BB1+CC1=3GG1.
Solution:
AA1=AG+GG1+G1Aˉ1
BB1=BG+GG1+G1B1
(Triangle law)
AA1=AG+GG1+G1A1
BB1=BG+GG1+G1B1
(Triangle law)
CC1=CG+GG1+G1C1
AA1+BB1+CC1=AG+GG1+G1A1+BG+GG1+G1B1
+CG+GG1+G1C1=3GG1+(AG+BG+CG)+(G1A1+G1B1+G1C1)=3GG1+(AG+GA2DG)+(G1A1+2G1D1)
Let P,Q,R&S be the points on the plane with position vectors −2i−j,4i,3i+3j & −3i+2j respectively. What kind of quadrilateral is PQRS ?
Solution:
PQ=OQ−OP=(4+2)i+j=6i+j
QR=OR−OQ=(−1)i+3j=−i+3j
RS=OS−OR=−6i−j=−PQ
SP=OP−OS=i−3j=−QR
PQ∣RSQR∣SP
unlike vectors
∣PQ∣=36+1=37∣PQ∣=∣RS∣
∣RS∣=36+137∣QR∣=∣SP∣
PQ⋅QR=(6i+j)(−i+3j)
=6(−1)+1(3)=−3.
QR⋅RS=3=SP⋅PQ
RS⋅SP=−3.
a⋅b=0
Rectangle X
∣QR∣=1+9
=10=37=∣PQ∣ Rhombus X
□ P Q R S must be a 11m.
Prove that the vectors
3i+5j+2k,2i−3j−5k&5i+2j−3k form sides of an equilateral triangle.
Solution:
Let
a=3i+5j+2k b=2i−3j−5k
a+b=5i+2j−3k=c
a⋅b=6−15−10=−19
a⋅c=15+10−6=19
b⋅c=10−6+15=19
∣a∣2=9+25+4=38
∣b∣2=38=∣c∣2
→cosθ1=∣a∣∣b∣a⋅b=38−19=−21=cos(120∘)
(180−θ1)=60∘
cosθ2=21=cosθ3θ2=60∘=θ3
This must he an equilateral Δ .
Show that the points A(−1,6,6),B(−4,9,6),C(0,7,10) form an isosceles right angled triangle.
Solution:
AB=−3i+3j
AC=i+j+4k
BC=4i−2j+4k
AB+BC=AC (Triangle)
∣AB∣=9+9=18
∣AC∣=1+1+16=18
∣AB∣=∣AC∣.
(isosceles)
AB+BC=AC (Triangle)
AB⋅AC=−3+3=0.
△ABC is right angled at A.
(isosceles)
△ABC is a right angled isosceles triangle.
If ∣a∣=3,∣b∣=1 and ∣c∣=4 and a+b+c=0.
Find the value of a⋅b+b⋅c+c⋅a
Solution:
0=(a+b+c)⋅(a+b+c)=a⋅a+b⋅b+c⋅c+2(a⋅b+b⋅c+a⋅c)
=∣a∣2+∣b∣2+∣c∣2+2(a⋅b+b⋅c+a⋅c)
=9+1+16+2(a⋅b+b⋅c+a⋅c)
=26+2()
()=2−26=−13
a⋅b+b⋅c+c⋅a=−13