- Given $\vec{a} \vec{b}, \vec{c}$
- 1. Suppose one of them is zero vector
- $(\vec{a} \times \vec{b}) \cdot \vec{c}=0$
- 2. Suppose two of the $\vec{a}, \vec{b}, \vec{c}$ are parallel or coincident
- (2). Suppose two of the 0,0 , parallel or coincident Then also $(\vec{a} \times \vec{b}) \cdot \vec{c}=0$
- (3) Suppose then assumption in (1) \& (2) are not true.
- Then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0 \Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar conversly,
- if $\vec{a}, \vec{b}, \vec{c}$ are coplanar, (ie) $\vec{c}=\alpha \vec{a}+\beta \vec{b}$