Vector Product (cross product)
Right handed system of directions OX, OY, OZ
DX,OY,OZ′ is left handed system.
OA,OB,OC RHS of directions.
OA,OB,OC′ LHS of directions.
Let a & b be two vectors. Letθ be the angle between them and
0≤θ≤π.
a×b:=∣a∣∣b∣n^sinθ
where n^ is a unit vector such that at 0 ,
a,b,n^ (in this specific order)
a⋅b=∣a∣∣b∣cosθ
form a RHS of directed
a×b
i) a,b,n^ from a RHS of directions
ii) ∣a×b∣=∣a∣⋅∣b∣sinθ
iii) a×b is perpendicular to each of a×b.
consider a & b
Area of parallelogram
= base × height
=(a)×∣b∣sinθ .
∣a×b∣
= Area of the parallelogram whose adjustment sides are a & b.
Also,21∣a×b∣ gives
the area of △ABC whose adjustment sides are a & b.
i) If one of a & b is 0,a×b=0
ii) If a & b are parallel,
a×b=0(∵θ=0,orπ)
iii) αa×βb=αβ(a×b)=a×(αβb)
iv) a×b=−b×a
v) a×(b+c)=a×b+a×c.
vi)
∣a×b∣2=∣a∣2∣b∣2⋅sin2θ
=∣a∣2∣b∣2(1−cos2θ)
=∣a∣2∣b∣2−∣a∣2∣b∣2cos2θ
[a⋅b=∣a∣∣b∣⋅cosθ]
=∣a∣2∣b∣2−(a⋅b)2
Vii) (a+b)×(c+d)
=a×c+a×d+b×c+b×d
To computea×b. Let,
Let a=a1i+a2j+a3k b=b1i+b2j+b3k
a×b=(a1i+a2j+a3k)×
(b1i+b2j+b3k)
i×i=0=j×j=k×k,
i×j=k,
j×k=i,
k×i=j,
i×k=−j,
j×i=−k,
k×j=−i,
=a1b1i×i+a1b2i×j+a1b3i×k
+a2b1j×i+a2b2j×j+a2b3j×k
+a3b1k×i+a3b2k×j+a3b3k×k
=a1b2k−a1b3j −a2b1k+a2b3c +a3b1j−a3b2i
=(a2b3−a3b2)i+(a3b1−a1b3)j+
(a1b2−a2b1)k
a×(b+c)=a×b+a×c
Proof.
a=a1i+a2j+a3k
b=b1i+b2j+b3k
c=c1i+c2j+c3k
a×(b+c)=ia1b1+c1ja2b2+c2ka3b3+c3
=ia1b1ja2b2ka3b3+ia1c1ja2c2ka3c3=a×b+a×c.
From the definition. of a×b
n^=∣a∣∣b∣sinθa×b=∣a×b∣a×b
and sinθ=∣a∣∣b∣∣a×b∣ .
a=3i−6j+2k&b=i−2j−2k
Find a unit vector perpendicular to both a & b and find the angle between a & b.
n^=∣a×b∣a×b
a×b=i31j−6−2k2−2=16i+8j
∣a×b∣=256+64=320=85
∴ The required unit vector =858(2i+j)=51(2i+j)
Here, ∣a∣=7 & ∣b∣=3.
sinθ=7×3∣a×b∣=2185
θ=sin−1(2185)
Take
a=2i−j+2k
b=10i−2j+7k
Let ∣a∣=10,∣b∣=2,a⋅b=12
Find ∣a×b∣
∣a×b∣2=∣a∣2b2−(a⋅b)2
=400−144=256
∴∣a×b∣=16:
For any 3 vectors a,b and c
Prove that a×(b+c)+b×(c+a)+c×(a+b)=0
Ex. Given a+b+c=0
Prove that a×b=b×c=c×a.
a×(a+b+c)=0
a×b+a×c=0
∴a×b=c×a
Similarly, b×(a+b+c)=0
gives a×b=b×c