a⋅b:=∣a∣∣b∣⋅cos(θ)
i) a⋅b=b⋅a
ii) If one of a & b is zero, a⋅b=0.
iii) if θ=π/2,a⋅b=0
We say a & b are perpendicular
a⊥b.
iv) a⋅a=∣a∣2
∴a⋅a→ length of the vector a.
If∣a∣=6,∣b∣=7,θ=60∘,then
a⋅b=6×7×21=21.
i⋅i=1
j⋅j=1
k⋅k=1
a⋅b=∣b∣⋅∣a∣cosθ
=∣b∣⋅ [length of the projection of a on b]
cosθ=∣a∣OM
⇒OM=∣a∣cosθ
a.b= length b× length of the projection of a on b
∣a∣cosθ×∣b∣b is called
the projection vector of a along b
a⋅(b+c)= length ofa× length of the proj.
b(b+c)
=∣a∣×OB1
=∣a∣×(OA1+A1B1)
=∣a∣OA1+∣a∣A1B1
=∣a∣× length of the projection a on a+∣a∣× length of projection c on a
ii) (a+b)⋅(c+d)
=a⋅(c+d)+b(c+d)
=a⋅c+a⋅d+b⋅c+b⋅d
iii)
∣a+b∣2=(a+b)⋅(a+b)
=∣a∣2+∣b∣2+2a⋅b
∣a∣2=a⋅a
iv) (a+b)⋅(a−b)=∣a∣2−∣b∣2
v) a⋅(kb)=k(a⋅b)=ka⋅b
vi) a⋅(b−c)=a⋅b−a⋅c
vii) cosθ=∣a∣⋅∣b∣a⋅b=a⋅a⋅b⋅ba⋅b
Consider
a=a1i+a2j
b =b_ 1 i+b_2 j $
a⋅b=(a1i+a2j)⋅(b1i+b2j)
=a1i⋅(b1i+b2j)+a2j⋅(b1i+b2j)
=a1b1+a2b2
In general,
(a1i+a2j+a3k)⋅(b1i+b2j+b3k)
=a1b1+a2b2+a3b3
Ex a=5i+3j−2k, b=8i−9j+6k
a⋅b=40−27−12=1
Ex. a=3i+j+5k
Verify: ∣a∣2=a⋅a
Pure : a⊥b
a⋅b=1−1+0=0
Ex a=i−j−k, b=2i+j+2k
Find the angle between them
cosθ=∣a∣∣b∣a⋅b=392−1−2=27−1
Ex. a=2i−j+k, b=3i+4j−k
Find the unit vector that is perpendicular to both a and b.
Let n=xi+yj+zk
since a⋅n=0 and b⋅n=0,
2x−y+z=0, 3x+4y−z=0 .
−3x=5y=11z(=λ)x=−3λy=5λz=11λ
∴ Required Unit vector =∣n∣n=9+25+12∣−3i+5j+11k=155−3i+5j+11k
F= Force vector
AB= displacement.
Work done by the
force =F⋅AB
Ex. A particle acted on by two force vectors
F1=2i+j−3k
and F2=3i−2j+2k, is displaced from (1,3,−1) to (4,−1,2). Find the work done by the forces
F=5i−j−k
d=3i−4j+3k
W⋅D=F⋅d
=15+4−3=16 unit
Prove: ∣a+b∣2+∣a−b∣2=2(∣a∣2+∣b∣2)
Soln. ∣a+b∣2=(a+b)⋅(a+b)
=∣a∣2+∣b∣2+2(a⋅b)
∣a−b∣2=∣a∣2+∣b∣2−2(a⋅b)
LHS =2∣a∣2+2∣b∣2
= RHS.
If ∣a+b∣=1,∣a−b∣= ?
Soln. By the above identity,
1+∣a−b∣2=2(32+42)=50
∣a−b∣=49=7
Some inequality.
Schwartz inequality.
Triangle inequality.
∣a⋅b∣=∣∣a∣∣b∣⋅cosθ∣
≤∣a∣∣b
∣a+b∣2=(a+b)⋅(a+b)
=a⋅(a+b)+b⋅(a+b)
=∣a∣2+∣b∣2+2(a⋅b)
≤∣a∣2+∣b∣2+2∣a∣∣b∣
=(∣a∣+∣b∣)2
∣a+b∣≤∣a∣+∣b∣ Triangle inequality.
If equality holds, (ie) if
∣a+b∣=∣a∣+∣b∣, then
∣AC∣=∣AB∣+∣BC∣
(ie) A,B,C are collinear point.