- Solution: Let $P \equiv(x, y)$ Then $Y_p \equiv\left(0, y-x \frac{d y}{d x}\right)$ (By the previous problem) given $P Y_P=1$
- $ \Rightarrow 1=p y_p^2=x^2+\left(x \frac{d y}{d x}\right)^2$
- $ \Rightarrow \quad\left(\frac{d y}{d x}\right)^2=\frac{1-x^2}{x^2}$
- $ \text { Since }\left(\frac{d y}{d x}\right)^2 \geqslant 0 \Rightarrow x^2 \leq 1 \Rightarrow-1 \leq x \leq 1$
- $ \therefore \quad \frac{d y}{d x}= \pm \frac{\sqrt{1-x^2}}{x},$
- (because P lies in the $1^{st}$ quadrant, x>0) $0
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/mathematics-class-12-unit-08-chapter-06-integral-calculus-4.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/mathematics-class-12-unit-08-chapter-06-integral-calculus-4a.jpg)