Let f be a differentiable function on R such that f(1)=1. If the y-intercept of the tangent at any point P(x,y) on the curve y=f(x) is equal to the cube of the abscissa of P, then find the value of f(−3).
Solution: Slope of tangent at P(x,y) is dxdy
∴ Eq of the tangent at P(x,y) is given by
y−y=dxdy(X−x)
Putting X=0, we get Y=y−xdxdy
This gives the y-intercept abscissa of P(x,y) is x,
given y−xdxdy=x3
⇒dxdy−x1y=−x2← linear 1st order ODE
I.F. =e∫x−1dx=e−lnx=x1
So, y⋅x1=∫x1(−x2)dx=2−x2+C
⇒y=cx−2x3
when x=1,y=1⇒1=c−21⇒c=23
∴y=f(x)=23x−2x3
∴f(−3)=23(−3)−2(−3)3
=2−9+227=9.
Q2. Let P denote a curve y=y(x) which is in the first quadrant and let the point (1,0) lie as it.Let the tangent to P at a point P intersect the y-axis at Yp. If PYp has length 1 for each point P on P, then
(A)y=ln(x1+1−x2)−1−x2
(B)xy′+1−x22=0
(C)y=−ln(x1+1−x2)+1−x2
(D)xy′−1−x2=0
Solution: Let P≡(x,y) Then Yp≡(0,y−xdxdy) (By the previous problem) given PYP=1
⇒1=pyp2=x2+(xdxdy)2
⇒(dxdy)2=x21−x2
Since (dxdy)2⩾0⇒x2≤1⇒−1≤x≤1
∴dxdy=±x1−x2,
(because P lies in the 1st quadrant, x>0) 0<x<1
If dxdy>0 for some x1∈(0,1) and dxdy<0 for some x2∈(0,1) then by the continuity dxdy must be zero at some x∈(0,1) However, (dxdy)2=x21−x2=0∀x∈(0,1)
∴ either dxdy=x1−x2 or dxdy=−x1−x2 for all x∈(0,1).
Now if dxdy>0 in (0,1), then y(x) is increasing in (0,1)
Also, it is given that y(1)=0⇒y(x)<0 in (0,1)
⇒P lies in the forth quadrant.
This is not true. dxdy=−x1−x2 for x∈(0,1) ⇒xy′+1−x2=0
Integrating, we get y=−∫x1−x2dx
[ Put x=sinθ, Then dx=cosθdθ,1−x2=cosθ]
=−∫sinθcosθcosθdθ =∫sinθsin2θ−1dθ =∫sinθdθ−∫cosecθdθ =−cosθ+ln∣cosecθ+cotθ∣+c
⇒y=−1−x2+ln(x1+1−x2)+c
since y(1)=0⇒c=0 ∴y=−1−x2+ln(x1+1−x2))
A solution curve of the differential equation
(x2+xy+4x+2y+4)dxdy=y2,x>0
passes though the point (1,3). Then the solution curve
(A) intersets y=x+2 at exactly one point.
(B) intersets y=x+2 at exactly tor points.
(C) intersets y=(x+2)2
(D) does not intersect y=(x+3)2.
Solution.
dxdy=x2+xy+4x+2y+4y2
=(x+2)2+y(x+2)y2=(x+2)(x+2+y)y2
=(1+x+2y)(y/x+2)2
put y=u(x+2)⇒dxdy=u+(x+2)dxdu
∴u+(x+2)dxdu=1+uu2
⇒(x+2)dxdu=1+uu−u=1+u−u
⇒∫u1+udu
=∫x+2−1dx
⇒ln∣u∣+u=−ln∣x+2∣+c
⇒ln∣u(x+2)∣+u=c
⇒ln∣y∣+x+2y=c
y(1)=3⇒ln3+1+23
=c→c=1+ln3
∴ln∣y∣+x+2y=1+ln3
Putting y=x+2, we get
ln∣x+2∣+1=1+ln3
⇒ln∣x+2∣=ln3
⇒ln(x+2)=ln3(sincex>0)
⇒x+2=3⇒x=1
Putting y=(x+2)2 in (∗), we get
ln(x+2)2+x+2(x+2)2=1+ln3
⇒2ln(x+2)+(x+2)=1+ln3 for any x>0, L.H.S. >2+2ln2
=2+ln4>1+ln3
∴ L.H.S = R.H.S for every x>0
Now, putting y=(x+3)2 in (∗), we get
ln(x+3)2+x+2(x+3)2=1+ln3
⇒2ln(x+3)+x+2(x+3)2=1+ln3−(∗∗)
x>0⇒2ln(x+3)+x+2(x+3)2>2ln3+1
Question-4 Let a solution y=y(x) of the differential equation xx2−1dy−yy2−1dx=0 satisfy y(2)=32. Consider two statements:
(1) y(x)=sec(sec−1x−6π) (2) y(x) is given by y1=x23−1−x21.
Then (A) Both (1) & (2) are true (B) (1) is true but (2) is false (C) (1) is false but (2) is true
(2) Both (I) & (2) are false.
Solution: We have yy2−1dy=xx2−1dx Note that dxd(sec−1x)=∣x∣x2−11…
By integrating, we get sec−1y=sec−1(x)+C
y(2)=32⇒sec−1(32)=sec−1(2)+C
⇒C=6π−3π=−6π
∴sec−1y=sec−1x−6π ⇒y=sec(sec−1x−6π) ⇒y1=cos(sec−1x−6π)
=cos(sec−1x)
cos6π+sin(sec−1(x))sin6π
=x1⋅23+1−x21⋅21 =2x3+211−x21
Let y(x) be a solution of the differential equation.
(1+ex)y′+yex=1. If y(0)=2, then
(A) y(−4)=0
(B) y(−2)=0
(C) y(x) has a critical point in (−1,0)
(D) y(m) has no critical point in (−1,0)
Solution'(1+ex)y′+yex=1
⇒dxd[(1+ex)y]=1
⇒(1+ex)y=x+c
⇒y=1+exx+c
y(0)=2⇒2=2c⇒c=4
∴y=1+exx+4⇒y(−4)=0
y(−2)=1+e−22>0
∴(A) is correct
(B) is wrongy(x)=1+exx+4 ⇒y′(x)=(1+ex)2(1+ex)⋅1−(x+4)ex
∴y′(0)=222−4=4−2=2−1<0
y′(−1)=(1+e−1)2(1+e−1)−3e−1
=(1+e−1)21−e2=e(1+e1)2e−2>0
By the intermediate value theorem , y′(x)=0 for some x∈(−1,0).
ie. y(x) has a critical point in (−1,0).
Suppose f(x+y)=f(x)f′(y)+f′(x)f(y)∀x,y∈R and f(0)=1. The find the value of lnf(u).
Solution: f(x+y)=f(x)f′(y)+f′(x)f(y)∀x,y∈R
Putting x=0,y=0, we get
f(0)=f(0)f′(0)+f′(0)f(0)=2f(0)f′(0)
⇒1=2f′(0)⇒f′(0)=21
putting y=0 is given equation, we get
f(x)=f(x)f′(0)+f′(x)f(0) =f(x)⋅21+f′(x)⋅1 ⇒f′(x)=21f(x) ⇒f(x)f′(x)
=21⇒lnf(x)=2x+c
f(0)=1⇒c=0
∴lnf(x)=2x⇒lnf(u)=24=2
Let's check that this f(x) satisfies the given functional equation.
lnf(x)=2x⇒f(x)=ex/2 f(x+y)=e2x+y=ex/2⋅ey/2
f(x)f′(y)+f′(x)f(y) =ex/2⋅21ey/2+21ex/2⋅ey/2
=ex/2⋅ey/2 ∴ It is satisfied.
Q7. The differential equation. dxdy=y1−y2 determines a family of circles with
(A) variable radii and a fixed centre at (0,1)
(B) variable radii and a fixed centre at (0,−1)
(C) fixed radius 1 and variable centres along the x-axis.
(D) fixed radius 1 and variable centres along the y-axis.
Solution dxdy=y1−y2 Variables separable DE
∴∫1−y2y2dy=∫dx
Put 1−y2=u2⇒−2ydy=2udu
∴ydy=−udu
∫1−y2ydy=∫u−udu =−u+c=−1−y2+c
∴x=−1−y2+c
⇒1−y2=c−x ⇒1−y2=(c−x)2=(x−c)2 (x−c)2+y2=1
where a c is arbitrary constant.A circle with centre at (c,0) and radius 1 . lies on the x-axis