- Let $y^{\prime}(x)+y(x) g^{\prime}(x)=g(x) g^{\prime}(x)$, $x \in \mathbb{R}$,
- $y(0)=0$, where $g(x)$ is a given now constant differentiable function on $\mathbb{R}$ write $g(0)=g(2)=0$. Then the value of $y(2)$ is
- Solution: $\frac{d y}{d x}+g^{\prime}(x) y=g(x) g^{\prime}(x) \leftarrow \text { linear }$
- $\text {Integral factor} =e^{\int g^{\prime}(x) d x}=e^{g(x)}$
- $\Rightarrow \quad y \cdot e^{g(x)}=\int e^{g(x)} \cdot g(x) g^{\prime}(x) d x$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/mathematics-class-12-unit-08-chapter-05-integral-calculus-12-A.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/mathematics-class-12-unit-08-chapter-05-integral-calculus-12-B.jpg)