Explicit form:
dxdy=f(x,y),
where x is the independent variable and y is dependent on x.
f is a given function of two variables.
Implicit form:
F(x,y,dxdy)=0
where F is a given function of three variables
(1) Variables separable method
Suppose the given ODE can be written in the form f(x)dx=g(y)dy.
Then we can simply integrate both sides
∫f(x)dx=∫g(y)dy
This gives solutions in implicit form. If possible, we will write y as a function of x.
An ODE of the form dxdy=f(xy)
In such cases, we put xy=u ie, y=ux
Then dxdy=u+xdxdu
∴u+xdxdu=f(u)
⇔xdxdu=f(u)−u
⇔f(u)−udu=xdx. Now integrate both sides
dxdy+p(x)y=g(x), where
p(x) and g(x) are given functions of x only. If we multiply the give equation by e∫p(x)dx then the L.H.S. becomes
e∫p(x)dxdxdy+p(x)e∫p(x)dxy
=dxd[e∫p(x)dx⋅y]
So, the ODE becomes
dxd[e∫p(x)dx⋅y]=e∫p(x)dx⋅g(x)
⇒e∫p(x)dxy=∫e∫p(x)dxg(x)dx+C
Thus we get the solution.
e∫p(x)dx is called an integrating factor.
If y=y(r) satisfies the differential equation 8x9+x
dy=(4+9+x)−1dx for x>0,
and y(0)=7, then find the value of y(256).
Solution- ∫dy=∫4+9+x1⋅8x9+x1dx
Put u=4+9+x
The du=29+x1⋅2x1dx
y=∫u1⋅2du=u+c
s⇒y=4+9+x+c
solve y(0)=7, we get C=0
∴y(r)=4+9+x
∴y(256)=4+9+16=4+5=3
Let f:R→R be a differentiable function such that f(0)=0.
If y=f(x) satisfies
dxdy=(2+5y)(5y−2), then find the value of limx→−∞f(x).
Solution: ∫(5y+2)(5y−2)1dy=∫dx
⇒∫41(5y−21−5y+21)dy=∫dx
⇒41[51ln∣5y−2∣−51ln∣5y+2∣]=x+c
⇒ln5y+25y−2=20x+20c
y(0)=0⇒ln0+20−2=0+20c ⇒c=0
∴ln5y+25y−2=20x
⇒5y+25y−2=e20x
Suppose L=limx→−∞f(x). Then
5L+25L−2=limx→−∞e20x=0 ⇒5L−2=0⇒L=52,
∴limx→−∞f(x)=52
A curve passes through the point (1,6π) Let the slope of the tangent to curve at any point (x,y) be
xy+sec(xy) for x>0. Then the equation of the curve is
(A) sin(7y)=lnx+21
(B) cosec(xy)=lnx+21
(C) sec(x2y)=lnx+2
(D) cos(x2y)=lnx+21
Solution: Givedxdy=xy+sec(xy),x>0
This is a homogenears form
put y=ux. Then u+xdxdu=u+secu
⇒xdxdu=secu
⇒∫cosudu=∫xdx
⇒sinu=lnx+c
⇒sin(xy)=lnx+c
whenx=1,y=6π∴sin6π=ln1+c
⇒c=21
1) sin(xy)=lnx+21
Q4 Let f:(0,∞)→R be a differentiable function such that f′(x)=2−xf(x) ard f(1)=1.
Then
(A) limx→0+f′(x1)=1
(B) limx→0+xf(x1)=2
(C) limx→0+x2f′(x)=0
(D) ∣f(x)∣≤2 for all x∈(0,2).
Solution:, write y=f(x)
Then dxdy=2−xy ⇒dxdy+x1y=2← linear ODE.
⇒xdxdy+y=2x
⇒dxd(xy)=2x
⇒xy=x2+c
⇒y=xcx2+c=x+xc
Equation f(x)=x+xc ⇒f(1)=1+c
Since f(1)=1,c=0.
∴f(x)=x+xc for some c=0
⇒f′(x)=1−x2c⇒f′(x1)=1−cx2
i. Option (A) is correct.
xf(x1)=x[x1+cx]=1+cx2→1 as x→0+
∴ (B) is wrong. x2f′(x)=x2(1−π2c)=x2−c
∴limx→0x2f′(x)=−c=0
Note that since f′(x)=2−xf(x) x2f′(x)=2x2−xf(x)
Mistake:limx→0+xf(x)=0
limx→0+f(x) need not be finite.
f(x)=x+xc,c=0 Since xc→+∞ as x→0+
∴ f(x) is not bounded on (0,2).
∴ Optor (D) is wrong.
Solution: dxdy+g′(x)y=g(x)g′(x)← linear
Integral factor=e∫g′(x)dx=eg(x)
⇒y⋅eg(x)=∫eg(x)⋅g(x)g′(x)dx
By integertion by parts,
∫g(x)(eg(x)g′(x)dx)=∫g(x)d(eg(x))
=g(x)eg(x)−∫g′(x)⋅eg(x)dx
=g(x)eg(x)−eg(x)+c
∴yeg(x)=[g(x)−1]eg(x)+c
⇒y=g(x)−1+ce−g(x)
y(0)=0⇒0=g(0)−1+ce−g(0)
=0−1+c⇒c=1
∴y=g(x)−1+e−g(x)
y(2)=g(2)−1+e−g(2)=0−1+e0=−1+1=0
∴y(2)=0
Q6. Let f:[0,∞)→R be a continuous for such that
f(x)=1−2x+∫0xex−tf(t)dt for all x∈[0,∞)
Then (A) The curve y=f(x) passes throng (1,2)
(B) The curve y=f(x) passes through (2,−1)
(C) The area of the region R=(x,y)∈[0,1]×R:f(x)≤y≤1−x is 4π−2.
(D) The area of R is 4π−1.
Solution: f(x)=1−2x+∫0xex−tf(t)dt
putting x=0, we get f(0)=1 f(x)=1−2x+ex∫0xe−tf(t)dt
Differentiating with respect to x, we get
f′(x)=−2+ex∫0xe−tf(t)dt+ex⋅e−xf(x)
⇒f′(x)=−2+∫0xex−tf(t)dt+f(x) =−2+[f(x)−1+2x]+f(x)
⇒f′(x)−2f(x)=2x−3 Liner ODE.
Integrating factor =e∫−2dx=e−2x
⇒dxd[e−2xf(x)]=e−2x(2x−3)
⇒e−2xf(x)=∫(2x−3)e−2xdx
=(2x−3)−2e−2x−∫2⋅−2e−2xdx
=−21(2x−3)e−2x+−2e−2x+c
⇒f(x)=−21(2x−3)−21+ce2x
⇒f(x)=ce2x−x+1
f(0)=1⇒1=c+1⇒c=0
∴f(x)=1−x
x(1)=1−1=0
f(2)=1−2=−1∴ (B) is correct
R={(x,y)∈[0,1]×R:1−x≤1−x2}
Area (R)= ?
Area(R)=41π(1)2−21×1×1
=4π−21=4π−2
∴ (C) is corret
(D) is wrong.