Let S be the area of the region bouded by y=e−x2, y = 0, x = 0 and x = 1. Then
(A) S⩾e1
(B) S⩾1−e1
(C) S≤41(1+e1)
(D) S≤21+e1(1−21)
Solution: Area S ⩾ area of rectangle 0 ABC =1×e1 S⩾e1
Also, e−x2⩾e−x for all x∈[0,1] because x2⩽x for x∈[0,1]
∴∫01e−x2dx⩾∫01e−xdx=1−e1
∴ Option (B) is correct. By the figure,
S⩽21+e1(1−21)
Now,
(1−e1)−41(1+e1)
=43−e1−4e1=4e1(3e−4−e)
We know that 2<e<3
∴3e−4−e>3×2−4−3=2−3>0
∴1−e1>41(1+e1)
Since S⩾1−e1,S>41(1+e1)
∴ Option (C) is Wrong
Let f:[21,1]→[0,∞) be a now constant differentiable function such that
f′(x)<2f(x) and f(21)=1
Then the value of ∫1/21f(x)dx lies in the interval
(A) (2e−1,2e)
(B) (e−1,2e−1)
(C) (2e−1,e−1)
(D) (0,2e−1)
f′(x)<2f(x)
⇒f′(x)−2f(x)<0∀x∈[21,1]
⇒e−2x[f′(x)−2f(x)]<0 ⇒
⇒dxd[e−2xf(x)]<0∀x∈[21,1] ⇒
⇒e−2xf(x) is a decreasing function in[21,1]∴
∴e−2xf(x)<e−2(21)f(21)∀x>21
=e1
⇒f(x)<e2x−1 for x∈(21,1)
⇒∫1/21f(x)dx<∫1/21e2x−1dx=2e2x−11/21 =2e−21=2e−
∴∫1/21f(x)dx<2e−1
Also,sincef(x)>0,∫1/21f(x)dx>0
Let f(x) and g(x) be non constant differentiable functions on R such that
f′(x)=ef(x)−g(x))g′(x)∀x∈R and
f(1)=g(2)=1. Then
(A) f(2)<1−ln2
(B) f(2)>1−ln2
(C) g(1)>1−ln2
(D) g(1)<1−ln2
f′(x)=ef(x)−g(x)⋅g′(x)
⇒dxd[e−f(x)]e−f(x)f′(x)=
dxd[e−g(x)]e−g(x)g′(x)∀x
⇒e−f(x)=e−g(x)+C, for some constant C.
∴e−f(1)=e−g(1)+c⇒e−8(1)+c=e−1−(i)
e−f(2)=e−g(2)+c=e−1+c− (ii)
from (i) & (ii)
e−f(2)−e1=e1−e−g(1)
⇒e−f(2)+e−g(1)=e2
∴e−f(2)<e2 & e−g(1)<e2
⇒ef(2)>2e & eg(1)>2e
⇒f(2)>ln(2e)=1−ln2 & g(1)>1−ln2
Solution
g(21)=∫01t−1/2(1−t)−1/2dt
=∫01t(1−t)1dt
=∫0141−(t−21)21dt
=sin−1(1/2t−21)01
=sin−1(1)−sin−1(−1)
=2π−(−2π)=π
∴g(21)=π
g(a)=∫01t−a(1−t)a−1dt
∴g(1−a)=∫01t−(1−a)(1−t)(1−a)−1dt
=∫01ta−1(1−t)−adt
(∵∫abf(x)dx =∫abf(a+b−x)dx)
=g(a)
∴g(a)=g(1−a)∀a∈(0,1)
Differentiating, We get
g′(a)=−g′(1−a)
Putting a=21, g′(21)=−g′(21)
⇒g′(21)=0
Another way:
g(a)=∫01t−a(1−t)a−1dt
g′(a)=∫01∂a∂[t−a(1−t)a−1]dt
=∫01[−t−alnt(1−t)a−1+t−a(1−t)a−1ln(1−t)]dt
0 at a=21
∴g′(21)=0
Find the value of ∫014x3dx2d2[(1−x2)5]dx
Solution Direct way: First calculate dx2d2[(1−x2)5] and the integrate. But this involves let of computations.
Smarter way: Use integration by parts formula.
∫f(x)g′(x)dx=f(x)g(x)−∫f′(x)g(x)dx or,
∫f(x)g(x)dx=f(x)∫g(x)dx−∫f′(x)∫g(x)dxdx
∫014x3f′′(x)dx =4x3f′(x)01−∫0112x2f′(x)dx
=4x3f′(x)01−[12x2f(x)01−∫0124xf(x)dx]
f′(1)=0
∴∫014x3f′′(x)dx=24∫01xf(x)dx
=24∫01x(1−x2)5dx
Put
1−x2=y
−2xdx=dy
=12∫01y5dy
=2y601=2
∴I=2
If In =∫−ππ(1+πx)sinxsin(nx)dx for x=0,1,2,⋯,
Then,
(A) In=In+2∀n
(B) ∑m=110I2m+1=10π
(C) ∑m=110I2m=0
(D) In=In+1∀n
Solution In=∫0π[(1+πx)sinxsin(nx)+(1+π−x)sin(−x)sin(−nx)]dx
because
∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx
∴In=∫0πsinxsin(nx)dx
I0=0, I1=∫0πsinxsinxdx=π
I0=I1⇒(D) is wrong.
Now, In+2−In=∫0πsinxsin(n+2)x−sin(nx)dx =∫0πsinx2cos(n+1)x⋅sinxdx
=2n+1sin(n+1)x0π=0∴In+2=In∀n
Since, I0=0,I2m=0∀m I1=π,I2m+1=π∀m
The total number of distinct x∈[0,1] for which ∫0x1+t4t2dt=2x−1 is
Solution Let f(x)=∫0x1+t4t2dt−(2x−1) for x∈[0,1]
clearly, f is continuous and Differentiable function
Also,
f(0)=0−(−1)=1>0
f(1)=∫011+t4t2dt−1
For 0<t<1,1+t4t2<1
⇒∫011+t4t2dt<1
⇒f(1)<0
By the intermediate value theorem, there exists at least one x∈(0,1) for which f(x)=0.
Also, f′(x)=1+x4x2−2<1−2=−1<0
⇒f is strictly decreasing in (0,1).
⇒f can have at most one zero in (0,1)
∴ The number of x for which f(x)=0 is one.