- Solution: Area S $\geqslant$ area of rectangle 0 ABC $=1 \times \frac{1}{e}$ $S \geqslant \frac{1}{e}$
- Also, $e^{-x^2} \geqslant e^{-x}$ for all $x \in[0,1]$ because $x^2 \leqslant x$ for $x \in[0,1]$
- $\therefore \quad \int_0^1 e^{-x^2} d x \geqslant \int_0^1 e^{-x} d x=1-\frac{1}{e}$
- $ \therefore$ Option (B) is correct. By the figure,
- $S \leqslant \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/4db0dca0-b5e1-4d15-edb7-bbc403e07c00/public)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/mathematics-class-12-unit-08-chapter-04-integral-calculus-3.jpg)
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/4e20f722-8009-4dc1-3a38-8442adc17900/public)