suppose
f(x)⩾0
The area bounded by the curves
y=f(x),x=a,x=b
and the x-axis is given by
∫abf(x)dx
The area between the curves y=f(x),y=g(x) and x=a and x=b is given by
∫ab[f(x)−g(x)]dx if f(x)⩾g(x)
in general,
area
= ∫ab∣f(x)−g(x)∣dx
Find the area enclosed by the curves
y=sinx+cosx and y=∣cosx−sinx∣
over the interval [0,2π].
solution: Let f(x)=sinx+cosx
g(x)=∣cosx−sinx∣
for x∈[0,2π]
Here, g(x)=∣cosx−sinx∣≤∣cosx∣+∣sinx∣
=cosx+sinx for x∈[0,2π] = f(x)
f(x)⩾g(x) for x∈[0,2π]
∴ Required area =∫0π/2[f(x)−g(x)]dx
=∫0π/2[sinx+cosx−(cosx−sinx)]dx
Now, ∣cosx−sinx∣=cosx−sinx if 0≤x≤4π
∣cosx−sinx∣=sinx−cosx if 4π≤x≤2π
Area =∫0π/4[(sinx+cosx)−(cosx−sinx)]dx +∫π/4π/4[(sinx+cosx)−(sinx−cosx)]dx
=∫0π/42sinxdx+∫π/4π/22cosxdx −2cosx∣0π/4+(2sinx)∣π/4π/2 =−2(21−1)+2(1−21) =4(1−21)=4−22
Find the area of the region in the first quadrant given by (x,y):xy≤8,1≤y≤x2.
Solve Upper curve,
f(x)=x2,1≤x≤2
8/x,2≤x≤8
Upper curve f(x) = {x2,x8,1≤x≤22≤x≤8
Lower curve, g(x)=1,1≤x≤8
Area =∫18[f(x)−g(x)]dx
=∫12(x2−1)dx+∫28(x8−1)dx
=(3x3−x)∣12+(8ln∣x∣−x)∣28
=(38−2)−(31−1) +(8ln8−8)−(8ln2−2)
37−1+8ln4−6=16ln2−314.
Another way:
Area =∫14(y8−y)dy
=8ln∣y∣∣14−32y3/2∣14
=8ln4−32(43/2−1)
=16ln2−32(8−1)=16ln2−314.
If the line x=α divides the area of the region
R=(x,y)∈R2:x3≤y≤x,0≤x≤1 into equal parts, then
(A) 0<α≤21
(B) 21<α<1
(C) 2α4−4α2+1=0
(D) α4+4α2−1=0
Area of the region R=∫01(x−x3)dx
=(2x2−4x4)∣01 =21−41=41
∫0α(x−x3)dx=21×41
=81
⇒2α2−4α4
=81
⇒4α2−2α4=1
⇒2α4−4α2+1=0
∫01/2(x−x3)dx
=81−4(21)4 =81−641 =647<21 ⇒21<α<1
∴ Option (B) is correct.
Another way: 2α4−4α2+1=0 ⇒α2=44±16−8=1±21
since α<1⇒α2=1−21
⇒α=1−21>21
Let f:[−1,2]→(0,∞)
be a continuous function
such that : f(x)=f(1−x) for all x∈[−1,2].
Let, R1=∫−12xf(x)dx and, R2 be the area of the region bounded by
y=f(x),x=−1,x=2 and the x-axis.
Then,
(A) R1=2R2 (B) R1=3R2
(C) 2R1=R2 (D) 3R1=R2
R1=∫−12xf(x)dx
=∫−12xf(1−x)dx
Putting, 1−x=y,
∫−12xf(1−x)dx
=∫−12(1−y)f(y)dy
=∫−12f(y)dy−∫−12yf(y)dy
∴R1=R2−R1⇒2R1=R2
Find the area of the region
(x,y)∈R2:
y⩾∣x+3∣,
5y≤x+9≤15.
Solution: 5y≤x+9≤15
(1) 5y≤x+9andx≤6
(2) y≤5x+9 and x≤6 :
Let, f(x)=∣x+3∣
=x+3ifx⩾−3
−(x+3) if x<−3
y=∣x+3∣ intersects the line
x=6 at (6,3)
y=(x+1) intersects the line
y=5x+9 at
the points (−4,1) and (1,2).
So, the region is as below
Area of the region
= Area of trapezium ABCD−∫−4−3−(x+3)dx
Area of the region
→ Area of trapezium ABCD
=∫−4−3−(x+3)dx −∫−31x+3dx
→∫−31x+3dx
=32(x+3)3/2∣−31
=32(8−0)=316
∫−4−3−x−3dx
=3−2(−x−3)3/2∣−4−3 =3−2(0−1)=32
Area of trapezium ABCD
=21×(AD+BC)×CD =21(1+2)×5=215
∴ Area of the region =215−(316+32) =215−6=23
Let, F(x)=∫xx2+6π2cos2tdt, x∈R and
f:[0,21]→[0,∞) be a continuous function.
For each a∈[0,21], if F′(a)+2 is the area of the region bounded by x=0,y=0,
y=f(x) and x=a, then find the value of f(0).
Solution: Given,
F′(a)+2=∫0af(x)dx F(x)=∫xx2+6π2cos2tdt
⇒F′(x)=2cos2(x2+6π)⋅2x−2cos2x⋅1
=4xcos2(x2+6π)−2cos2x
∴F′(a)+2 =4acos2(a2+6π)−2cos2a+2
=4acos2(a2+6π)+2sin2a
∴∫0af(x)dx
=4acos2(a2+6π)+2sin2a
differentiating w.r.t. a,
f(a)=4cos2(a2+6π)
+4a⋅2cos(a2+6π)⋅sin(a2+6π)⋅2a +4sinacosa
Put a=0 :
f(0)=4cos26π+0+0 =4(23)2=3
∴f(0)=3