- Let, $F(x)=\int_x^{x^2+ \frac{\pi}{6}} 2 \cos ^2 t d t,$ $x \in R$ and
- $f:[0, \frac{1}{2}] \rightarrow[0, \infty)$ be a continuous function.
- For each $a \in[0, \frac{1}{2}]$, if $F^{\prime}(a)+2$ is the area of the region bounded by $x=0, y=0,$
- $ y=f(x)$ and $x=a$, then find the value of $f(0).$
- Solution: Given,
- $F^{\prime}(a)+2=\int_0^a f(x) d x$ $F(x) =\int_x^{x^2+\frac{\pi}{6}} 2 \cos ^2 t d t $
- $\Rightarrow F^{\prime}(x) =2 \cos ^2(x^2+\frac{\pi}{6}) \cdot 2 x-2 \cos ^2 x \cdot 1$
- $ =4 x \cos ^2(x^2+\frac{\pi}{6})-2 \cos ^2 x $
- $\therefore \quad F^{\prime}(a)+2 $ $=4 a \cos ^2(a^2+\frac{\pi}{6})-2 \cos ^2 a+2$