###
Integral Calculus L-2
###
Integral calculus lecture-2
###
Integral Calculus L-2
###
Definite integrals as limits of sums
- $\text { Let } x_0=a, x_1=a+h, x_2=a+2 h, \cdots, x_n=a+n h=b $ - $\text { Then } n h=x_n-x_0=b-a $ - $\therefore \quad h=\frac{b-a}{n}$
###
Integral Calculus L-2
###
Definite Integrals as Limits of Sums
- $\int_a^b f(x) d x$ - $=\lim_{n \rightarrow \infty}$ $\sum_{k=1}^n {h.f(a+k h)} $ - $=\lim_{n \rightarrow \infty} \sum_{k=1}^n{(\frac{b-a}{n}).f(a+k \frac{(b-a)}{n})}$ - In particular, if $a=0$ and $b=1$ - $\int_0^1 f(x) d x=\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{n} f\left(\frac{k}{n}\right)$
###
Integral Calculus L-2
###
Definite Integrals as Limits of Sums
- If we take the values of the function at the left end points of each sub interval instead of the right end points, we still get $\int_a^b f(x) d x$. - $\int_a^b f(x) d x=\lim_{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(\frac{b-a}{n}\right) f\left(a+k\left(\frac{b-a}{n}\right)\right)$
###
Integral Calculus L-2
###
Problem-1
- For $a \in \mathbb{R},|a|>1$, let - $\lim_{n \rightarrow \infty} \frac{1+\sqrt[3]{2}+3 \sqrt{3}+\cdots+\sqrt[3]{n}}{n^{7 / 3}\left(\frac{1}{(a n+1)^2}+\frac{1}{(a n+2)^2}+\cdots+\frac{1}{(a n+n)^2}\right)}=54$ - Then the possible values of $a$ are - (A) -9 - (B) -6 - (C) 7 - (D) 8
###
Integral Calculus L-2
###
Solution
- $\text { Sol: We have }$ - $\lim_{n \rightarrow \infty} \frac{\sum_{r=1}^n r^{1 / 3}}{n^{7 / 3} \sum_{r=1}^n \frac{1}{\left(a_n+r\right)^2}}$ - $=\lim_{n \rightarrow \infty} \frac{n^{1 / 3} \sum_{r=1}^n\left(\frac{r}{n}\right)^{1 / 3}}{n^{7 / 3} \cdot \frac{1}{n^2} \sum_{r=1}^n \frac{1}{\left(a+\frac{r}{n}\right)^2}}$
###
Integral Calculus L-2
###
Solution
- $=\lim_{n \rightarrow \infty} \frac{n^{1 / 3} \sum_{r=1}^n\left(\frac{r}{n}\right)^{1 / 3}}{n^{7 / 3} \cdot \frac{1}{n^2} \sum_{r=1}^n \frac{1}{\left(a+\frac{r}{n}\right)^2}}$ - $=\frac{\lim_{n \rightarrow \infty} \sum_{r=1}\left(\frac{r}{n}\right)^{1 / 3}}{\lim_{n \rightarrow \infty} \sum_{r=1}^n\frac{1}{\left(a+\frac{r}{n}\right)^2}}$ - $=\frac{\lim_{n \rightarrow \infty} \frac{1}{n}\sum_{r=1}\left(\frac{r}{n}\right)^{1 / 3}}{\lim_{n \rightarrow \infty} \frac{1}{n}\sum_{r=1}^n\frac{1}{\left(a+\frac{r}{n}\right)^2}}$ - $=\frac{\int_0^1 x^{1 / 3} d x}{\int_0^1 \frac{1}{(a+n)^2} d x} = \frac{\left.\frac{3}{4} x^{4 / 3}\right|_0 ^1}{\left.\frac{-1}{a+x}\right|_0 ^1}=\frac{3}{4} a(a+1)$
###
Integral Calculus L-2
###
Solution
- So, - $\frac{3}{4} a(a+1)=54 $ - $\Rightarrow a^2+a=72 $ - $\Rightarrow a^2+a-72=0 \Rightarrow(a-8)(a+9)=0 $ - $\Rightarrow a=8 \text { or } a=-9$
###
Integral Calculus L-2
###
Problem-2
- Q2. For $n \in \mathbb{N}$, let $y_n=\frac{1}{n}[(n+1)(n+2) \cdot-(n+n)]^{1 / n}$ - If $\lim_{n \rightarrow \infty} y_n=L$, the the value of $[L]=$ ?
###
Integral Calculus L-2
###
Solution
- $y_n =\frac{1}{n}[(n+1)(n+2) \cdots(n+n)]^{1 / n} $ - $=\left[\left(\frac{n+1}{n}\right)\left(\frac{n+2}{n}\right) \cdots\left(\frac{n+n}{n}\right)\right]^{1 / n} $ - $=\left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{n}{n}\right)\right]^{1 / n}$ - $\Rightarrow \quad \ln y_n=\frac{1}{n} \sum_{k=1}^n \ln \left(1+\frac{k}{n}\right) $ - $\Rightarrow \quad \lim_{n \rightarrow \infty} \ln y_n =\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{n} \ln \left(1+\frac{k}{n}\right) $ - $=\int_0^1 \ln (1+x) d x$
###
Integral Calculus L-2
###
Solution
- (Integ. by parts) $\Longrightarrow x \ln (1+x)|_0^1-\int_0^1 \frac{x}{1+x} d x$ - $=\ln 2-0-\int_0^1\left(1-\frac{1}{1+x}\right) d x $ - $=\ln 2-\left.[x-\ln (1+x)]\right|_0 ^1 $ - $=\ln 2-(1-\ln 2) $ - $=2 \ln 2-1=\ln 4-\ln e=\ln \left(\frac{4}{e}\right)$
###
Integral Calculus L-2
###
Solution
- So, $\lim_{n \rightarrow \infty} \ln y_n=\ln \left(\frac{y}{e}\right)$ - Taking exponential, $\lim_{n \rightarrow \infty} y_n=\frac{4}{e}$ - $\therefore \quad L =\frac{4}{e} \quad \text { since } 2
###
Integral Calculus L-2
###
Problem-3
- Let $f(x)=\lim_{n \rightarrow \infty}\left[\frac{n^n(x+n)\left(x+\frac{n}{2}\right) \cdots\left(x+\frac{n}{n}\right)}{n !\left(x^2+n^2\right)\left(x^2+\frac{n^2}{n}\right) \cdots+\left(x^2+\frac{n^n}{n^2}\right)}\right]^{x / n}$, - for $x>0$. Then - (A) $f\left(\frac{1}{2}\right) \geq f(1)$ - (B) $f\left(\frac{1}{3}\right) \leq f\left(\frac{2}{3}\right)$ - (C) $\quad f^{\prime}(2) \leq 0$ - (D) $\frac{f^{\prime}(3)}{f(3)} \geq \frac{f^{\prime}(2)}{f(2)}$
###
Integral Calculus L-2
###
Solution
- $\frac{n^n(x+n)\left(x+\frac{n}{2}\right) \cdots\left(x+\frac{n}{n}\right)}{n !\left(x^2+n^2\right)\left(x^2+\frac{n^2}{2}\right) \cdots\left(x^2+\frac{n^2}{n^2}\right)} $ - $= \frac{n^n \cdot n\left(1+\frac{x}{n}\right) \cdot \frac{n}{2}\left(1+\frac{2 x}{n}\right) \cdots \frac{n}{n}\left(1+\frac{n x}{n}\right)}{n ! n^2\left(1+\frac{x^2}{n^2}\right) \cdot \frac{n^2}{2^2}\left(1+\frac{2^2 x^2}{n^2}\right) \cdots \frac{n^2}{n^2}\left(1+\frac{n^2 x^2}{n^2}\right)}$
###
Integral Calculus L-2
###
Solution
- $=\frac{\frac{n^{2 n}}{n y}\left(1+\frac{x}{n}\right)\left(1+\frac{2 x}{n}\right) \cdots\left(1+\frac{n x}{n}\right)}{n! \frac{n^{2 n}}{(n!)^2}\left(1+\frac{x^2}{n^2}\right)\left(1+\frac{2^2 x^2}{n^2}\right) \cdots\left(1+\frac{n^2 x^2}{n^2}\right)} $ - $\therefore \quad f(x)=$ - $\lim_{x \rightarrow \infty}\left[\frac{\left(1+\frac{x}{n}\right)\left(1+\frac{2 x}{n}\right) \cdots\left(1+\frac{n x}{n}\right)}{\left(1+\left(\frac{x}{n}\right)^2\right)\left(1+\left(\frac{2 x}{n}\right)^2\right) \cdots\left(1+\left(\frac{n x}{n}\right)^2\right.}\right]^{x / n}$
###
Integral Calculus L-2
###
Solution
- $\ln f(x)= \lim_{n \rightarrow \infty} \frac{x}{n} \sum_{k=1}^n \ln \left(1+\frac{k x}{n}\right) $ - $-\sum_{k=1}^n \ln (1+(\frac{k x}{n})^2] $ - $= \lim_{n \rightarrow \infty} \frac{x}{n} \sum_{k=1}^n \ln \left(1+\frac{k x}{n}\right) $ - $-\lim_{n \rightarrow \infty} \frac{x}{n} \sum_{k=1}^n \ln \left(1+\left(\frac{k x}{n}\right)^2\right)$
###
Integral Calculus L-2
###
Solution
- $=\int_0^x \ln (1+y) d y-\int_0^x \ln \left(1+y^2\right) d y$ - $\Rightarrow \quad \ln f(x)=\int_0^x \ln \left(\frac{1+y}{1+y^2}\right) d y$ - differentiating w.r.t $x$, we get - $\frac{f^{\prime}(x)}{f(x)}=\ln \left(\frac{1+x}{1+x^2}\right), x>0$ - $\Rightarrow \quad f^{\prime}(x)=f(x) \ln \left(\frac{1+x}{1+x^2}\right)$ - Note that $f(x)>0$ - and $\ln \left(\frac{1+x}{1+x^2}\right)>0 \quad$ if $0
1$ - $\therefore \quad f^{\prime}(x)>0 \quad$ if $0
1$
###
Integral Calculus L-2
###
Solution
- $\Rightarrow \quad f \text { is increasing on }(0,1)$ - $\text { and } $ - $\text { decreasing on }(1, \infty) $ - $\Rightarrow \quad f\left(\frac{1}{2}\right)
###
Integral Calculus L-2
###
Solution
- $\quad \frac{f^{\prime}(x)}{f(x)}=\ln \left(\frac{1+x}{1+x^2}\right) $ - $\therefore \quad \frac{f^{\prime}(3)}{f(3)}=\ln \left(\frac{4}{10}\right)=\ln \left(\frac{2}{5}\right)$ - $\frac{f^{\prime}(2)}{f(2)}=\ln \left(\frac{3}{5}\right)$ - $\Rightarrow \frac{f^{\prime}(3)}{f(3)}<\frac{f^{\prime}(2)}{f(2)}$ - Ans: (B), (C)
###
Integral Calculus L-2
###
Problem-4
- Let $f(x)=$ - $\int_{1 / x}^x \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t$ for $x \leftarrow (0, \infty)$. - Then - (A) $f$ is increasing on $(1, \infty)$ - (B) $f$ is decreasing on $(0,1)$ - (C) $f(x)+f\left(\frac{1}{x}\right)=0$ for all $x \leftarrow(0, \infty)$ - (D) $f\left(2^x\right)$ is an odd function of $x$ on $\mathbb{R}$
###
Integral Calculus L-2
###
Solution
- Sol: $\text { Recall: }$ - $\frac{d}{d x}\left[\int_{a(x)}^{b(x)} f(t) d t\right]=f(b(x)) \cdot b^{\prime}(x)-f(a(x)) a^{\prime}(x)$ - $f(x)=\int_{1 / x}^x \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t \Rightarrow f^{\prime}(x)= \frac{e^{-\left(x+\frac{1}{x}\right)}}{x} \cdot 1-\frac{e^{-\left(\frac{1}{x}+x\right)}}{1 / x} \cdot\left(\frac{-1}{x^2}\right)$ $=\frac{2 e^{-\left(x+\frac{1}{x}\right)}}{x}>0 \text { for all } x>0$ $\Rightarrow f$ is strictly increasing on $(0, \infty)$ - Another ways: We see that the internal $\left(\frac{1}{x}, x\right)$ increases as $x$ increases. - Also, the integrand is positive - $\therefore \quad f(x)$ is increasing function on $(0, \infty)$
###
Integral Calculus L-2
###
Solution
- Now, - $f\left(\frac{1}{x}\right)=\int_x^{1 / x} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t} d t $ - $\text { put } t=\frac{1}{y} \cdot$ then $ d t=\frac{-1}{y^2} d y $ - $\text { when } t=x, y=\frac{1}{x} $ - $\text { when } t=\frac{1}{x}, y=x $
###
Integral Calculus L-2
###
Solution
- So, - $f\left(\frac{1}{x}\right)=\int_{1 / x}^x \frac{e^{-\left(\frac{1}{y}+y\right)}}{1 / y} \cdot\left(\frac{-1}{y^2} d y\right) $ - $= -\int_{1 / x}^x \frac{e^{-\left(y+\frac{1}{y}\right)}}{y} d y=-f(x) $ - $\Rightarrow \quad f(x)+f\left(\frac{1}{x}\right)=0 \quad \text { for all } x>0$ - Also, if $g(x) = f(2^x)$ , then - $g(-x)=f\left(2^{-x}\right)=f\left(\frac{1}{2^x}\right)=-f\left(2^x\right)=-g(x)$ - $\Rightarrow \quad g(x)$ is an odd function
###
Integral Calculus L-2
###
Thank you