If I=π2∫π/4π/4(1+esinx)(2−cos2x)dx then 27I2= ?
Solution:
Recall: ∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx
Pf: ∫−aaf(x)dx=∫−a0f(x)dx+∫0af(x)dx
Now putting x=−y in the first integral, dx=−dy and
when x=−a,y=a;
when x=0,y0=0
So, ∫−a0f(x)dx=∫axf(−y)(−dy)
−∫aaf(x)dy−∫0a(1−y)dy
=∫0af(−x)dx
i.e, ∫−aaf(x)dx=∫0a[f(−x)+f(−x)]dx
Recall
Special Cases:
(1) If f is an old function, ie.,
f(−x)=−f(x), then
∫−aaf(x)dx=0
(2) If f is an even function, ie., f(−x)=f(x), then
∫−aaf(x)dx=2∫0af(x)dx
Solution: We have
f(x)=(1+esinx)(2−cos2x)1
∴f(−x)=(1+esin(−x))(2−cos(−2x))1
=(1+e−sinx)(2−cos2x)1
=(1+esinx)(2−cos2x)esinx
⇒f(x)+f(−x)=(1+esinx)(2−cos2x)(1+esinx)
=2−cos2x1
=2−(2cos2x−1)1
=2−cos2x1
=2−(2cos2x−1)1
=3−2cos2x1
∴I=π2∫0π/4(3−2cos2x)1dx
=π2∫0π/43sec2x−2sec2xdx
=π2∫0π/43(1+tan2x)−2sec2xdx
Put u=tanx. Then du=sec2xdx When x=0,u=0
When x=4π,u=tan4π=1
So, I=π2∫013u2+1du =3π2∫01u2+(31)2du
=3π2(1/3)1tan−1(1/3u)01
=3π2(tan−13−tan−10)
=3π2×3π=332
⇒I2=274⇒27I2=4
Find the value of the integral
I=∫0π/2(cosθ+sinθ)53cosθdθ
Sol: Substitute θ=2π−φ
The dθ=−dφ
When θ=0,φ=2π
when θ=2π,φ=0
Also, cosθ=cos(2π−φ)=sinφ
and π/2sinθ=cosφ
∴I=∫0π/2(sinφ+cosφ)53sinφdφ =∫0π/2(cosθ+sinθ)53sinθdθ
Adding (i) & (ii), we get
2I=∫0π/2(cosθ+sinθ)53(cosθ+sinθ)dθ
=∫0π/2(cosθ+sinθ)43dθ
=∫0π/2cos2θ(1+tanθ)43dθ
=∫0π/2(1+tanθ)43secθdθ
=∫0π/2(cosθ+sin−θ)43dθ
=∫0π/2cos2θ(1+tanθ)43dθ
=∫0π/2(1+tanθ)43sec2θdθ
∴2I=∫0∞(1+t)43(2tdt)
⇒I=3∫∞(t+1)4tdt
Put
tanθ=t2
sec2θdθ=2tdt
When θ=0,t=0
When θ=2π,t=0
=3∫0∞(t+1)4(t+1)−1dt
=3[∫0∞(t+1)−3dt−∫0∞(t+1)−4dt]
=3(2(t+1)2−1+3(t+1)31)0∞
=3[∫0∞(t+1)−3dt−∫0∞(t+1)−4dt]
=3(2(t+1)2−1+3(t+1)31)0∞
=3(0+21−31)=3×61=21
Find the value of the integral
I=∫01/4[(x+1)2(1−x)6]1/41+3dx
Solution:
I=(1+3)∫01/2(x+1)1/2(1−x)3/2dx
=(1+3)∫01/2(1−x)1−x2dx
Put x=sinθ. The dx=cosθdθ When x=0,θ=0
When x=21,θ=6π
∴I=(3+1)∫0π/6(1−sinθ)cosθcosθdθ
=(3+1)∫0π/6cos2θ1+sinθdθ
=(3+1)∫0π/6(sec2θ+secθtanθ)dθ
=(3+1)(tanθ+secθ)0π/6
=(3+1)[31+32−0−1]
=(3+1)(33−1)
=(3+1)(3−1)=2
∴I=2
Let f:R→R be a differentiable function such that f(0)=0,f(2π)=3 and f′(0)=1.
If g(x)=∫xπ/2[f′(t)cosect−cottcosectf(t)]dt, for x∈(0,2π], the
limx→0g(x)= ?
Soln: Note that f′(t)cosect−cosectcottf(t)
=dtd[f(t) cosect ]
1) g(x)=∫xπ/2dtd[f(t)cosect]dt
Note that cosec 0 is not defined, so we connot find g(0)
But limx→0g(x)=3−limx→0sinxf(x)(00)
=3−limx→0sinx/xf(x)/x
=3−limx→0sinx/xf(x)/x =3−limx→0xf(x)(∵limx→0xsinx=1) =3−limx→0x−0f(x)−f(0)(∵f(0)=0) =3−f′(0)=3−1=2
If I=∑k=198∫kk+1x(x+1)k+1dx, the
(A) I>ln99
(B) I<ln99
(C) I<5049
(D) I>5049
Note that ln99=∫199x1dx=∑k=198∫kk+1x1dx
Now, if $k
⇒x+1k+1<1∴x(x+1)k+1<x+11
So, ∫kknx(x+1)kndx<∫kx+1x1dx
1) I=∑h=198∫hh+1x(x+1)k+1dx<ln99
∴(A) is false; (B) is true.
Similarly, xk+1>1 if k<x<k+1 i. x(x+1)k+1>x+11
∫k+1k+1x(x+1)k+1dx>∫kk+1x+11dx
∴=∑k=198∫kk+1x(x+1)k+1dx>∫199x+11dx =ln(x+1)∣199 =ln100−ln2 =ln50
Clearly, ln50>1>5049,sinI>5049
∴ (D) is true; (C) is false
Remark, Note that 5049=10098
So if we show that ∫h50k+1x(x+1)k+1dx>1001 for each k, the I>10098=5049
Put x=k+y. When x=k,y=0 the x=k+1,y=1
∫kk+1x(x+1)k+1dx=∫01(k+y)(k+1+y)k+1dy
>∫01(k+1+y)1dy(∵k+yk+1>1)
>k+21⩾1001 if 1⩽k⩽98
∴∫kk+1x(x+1)k+1dx>1001
Let f:R→R be defined by
f(x)=[x],x≤2
0,x>2
If I=∫−122+f(x+1)xf(x2)dx, then I= ?
=n, if n⩽x<n+1 for any integer n
let g(x)=2+f(x+1)xf(x2)
Now :
f(x2)={[x2]0 if x2≤2 if x2>2
=⎩⎨⎧010 if −1<x<1 if 1≤x<2 if x>2
Also, f(x+1)={[x+1] if x+1≤20 if x+1>2
={2x0 if 1≤x<2 otherwise
∴I=∫−12g(x)dx
=∫−11g(x)dx+∫12g(x)dx+∫22g(x)dx
=∫122xdx=4x212=41(2−1)&=41
So, I=41