Note that $\ln 99=\int_1^{99} \frac{1}{x} d x=\sum_{k=1}^{98} \int_k^{k+1} \frac{1}{x} d x$
Now, if $k<x<k+1$, the $k+1<x+1$
$\begin{gathered}\Rightarrow \frac{k+1}{x+1}<1 \\ \therefore \frac{k+1}{x(x+1)}<\frac{1}{x+1}\end{gathered}$
So, $\quad \int_k^{k n} \frac{k n}{x(x+1)} d x<\int_k^{x+1} \frac{1}{x} d x$