∫ex+e−xdx[e−x=ex1]
Solution:
=∫e2x+1exdx[ex=t],[exdx=dt]
=∫t2+1dt=tan−1t+c
=tan−1ex+c
Solution:
[cos2x=cos2x−sin2x]
=∫(cosx+sinx)2(cosx−sinx)(cosx+sinx)dx
=∫cosx+sinxcosx−sinxdx
=∫tdt=log∣t∣+c
=log∣sinx+cosx∣+c
I=∫1−2sin2xcos2xsin8x−cos8xdx
Solution:
[A2−B2=(A−B).(A+B)]
Numerator =
(sin4x)2−(cos4x)2
=(sin4x−cos4x)(sin4x+cos4x)
=(1−2cos2x)(1+cos4x−2cos2x+cos4x)
=(1−2cos2x)(1+2cos4x−2cos2x)
Denominator=1−2sin2xcos2x
=1−2(1−cos2x)cos2x
=(1−2cos2x+2cos4x)
I=∫(1−2cos2x)dx
[cos2x =2cos2x−1][cos2x=21+cos2x]
= x−2[∫21+cos2xdx]
= x−x−2sin2x+c
= −sinxcosx+c
Solution:
I1=∫asec2x+btan2xsec2xdx
[1+tan2x=sec2x]
=∫a+(a+b)tan2xsec2xdx
[tanx=t]
[sec2xdx=dt]
=∫a+(a+b)t2dt
=(a+b)1∫(a+ba)+t2dt
=a+b1∫α2+t2dt[α=a/a+b]
=a+b1×α1⋅tan−1αt+c
=a+b1×aa+btan−1ata+b+c
=a(a+b)1⋅tan−1ata+b+c
I=∫II1.Isin−11+x22xdx
Solution:
[dxdsin−1x=1−x21]
=sin−11+x22x⋅x−∫1−(1+x22x)21×dxd(1+x22x)×xdx
[dxd(1+x22x)=(1+x2)2(1+x2)×2−2x×2x=(1+x2)22(1−x2)]
1−(1+x22x)2=1−(1+x2)24x2=(1+x2)2(1+x2)2−4x2
=(1+x2)2(1−x2)2=(1+x2)(1−x2)
⇒I=xsin−11+x22x−∫(1+x2)1−x2x×(1+x2)22(1−x2)dx
=xsin−11+x22x−∫1+x22xdx
I=∫cos−1(2x2−1)dx
Solution:
x=cosθ⇒dx=−sinθdθ
I=∫cos−1(2cos2θ−1)(−sinθ)dθ
=∫2⋅θ(−sinθ)dθ
=−2∫θsinθdθ
=−2[θ(−cosθ)−∫1⋅(−cosθ)dθ]
=+2θcosθ−2sinθ+c
=2xcos−1x−21−x2+c
I=∫tan−11+x1−xdx
Solution:
[cos2θ=1−2sin2θ=2cos2θ−1]
[x=cos2θ
dx=−2sin2θdθ]
1+x1−x=1+(2cos2θ−1)1−(1−2sin2θ)=cos2θsin2θ
I=∫tan−1(tanθ)×(−2sin2θ)dθ
=−2∫IθIIsin2θdθ
θ→x
I=∫1+x1−xdx
Solution:
[x=cos2θ
∴(1+x1−x)=1+cos2θ1−cos2θ=cos2θsin2θ, ] [2x1dx
=2sin2θdθ
dx=−4cos2θsin2θdθ
=−2sin4θdθ ]
I=∫tanθ×(−2sin4θ)dθ
=−2∫cosθsinθ×2sin2θcos2θdθ
=−4∫cosθsinθ×2sinθcosθ⋅cos2θdθ
I=∫ex(f(x)+f′(x))dx
Solution:
=∫I1exf(x)dx+∫I2exf′(x)dx
I1=∫IIexIf(x)dx
=f(x)ex−I2∫f′(x)exdx+c
I1=f(x)⋅ex−I2+c
⇒I=f(x)⋅ex−I2+I2+c
⇒I=exf(x)+c
I=∫ex(x1−x21)dx
Solution
[Here, x1=f(x);−x21=f′(x)]
I=∫ex⋅x1dx−∫exx21dx
=x1ex+∫x21exdx−∫x2exdx+c
=xex+c
I=∫[log(logx)+(logx)21]dx
Solution:
logx=t⇒x=et
⇒x1dx=dt
dx=xdt=etdt
I=∫(logt+t21)etdt
=∫etlogtdt+∫t2etdt
=logt.et−∫t1.etdt+∫t2etdt
=etlogt−(∫et(t1−t21)dt)
=etlogt−et⋅t1+c
=xlog(logx)−x.logx1+c
=etlogt−et⋅t1+c
=xlog(logx)−x⋅logx1+c
I=∫ex(1+cosx1+sinx)dx
Solution:
(1+cosx1+sinx)=1+2cos22x−1cos22x+sin22x+2sin2xcos2x
=21cos2x/2(cosx/2+sinx/2)2
=21(1+tanx/2)2
=21(1+tan22x+2tan2x)
=21sec22x+tan2x
[Here, tan2x=f(x) ; 21sec22x=f′(x)]
⇒I=∫ex(tan2x+21sec22x)dx
I=extan2x+c
I=∫(1+x−x1)ex+x1dx
Solution:
=∫ex+x1dx
+∫Ix.IIx1(x−x1)ex+x1dx
[Put,x+x1=t,⇒(1−x21)dx=dt,⇒x2x2−1dx=dt
⇒∫x1(x−x1)ex+x1dx
=∫etdt=et
=ex+x1
⇒I=∫ex+x1dx+xex+x1−∫1.ex+1/xdx+c
=xex+x1+c