- $ I=\int \frac{\sin ^8 x-\cos ^8 x}{1-2 \sin ^2 x \cos ^2 x} d x $
- Solution:
- $ [A^2-B^2=(A-B).(A+B)]$
- Numerator =
- $(\sin ^4 x)^2-(\cos ^4 x)^2$
- $=\left(\sin ^4 x-\cos ^4 x\right)\left(\sin ^4 x+\cos ^4 x\right) $
- $ =(\sin ^2 x-\cos ^2 x) (\sin ^2 x+\cos ^2 x)(\sin ^4 x+\cos ^4 x) $
- $ =(1-2 \cos ^2 x)((1-\cos ^2 x)^2+\cos ^4 x) $
- $ =(1-2 \cos ^2 x)(1+\cos ^4 x-2 \cos ^2 x+\cos ^4 x) $
- $ =(1-2 \cos ^2 x)(1+2 \cos ^4 x-2 \cos ^2 x) $