∫Ix2IIexdx
Solution:
=x2(∫exdx)−∫2x(∫exdx)dx
=x2ex−2∫xexdx
=x2ex−2[x(∫exdx)−∫1(∫exdx)dx]
=x2ex−2[xex−∫exdx]
∫x2ex=x2ex−2xex+2ex+C
∫IxIIsin3xdx
Solution:
=x∫sin3xdx−∫1⋅(∫sin3xdx)dx
=x(3−cos3x)−∫(−3cos3x)dx
[∫f(ax+b)dx=aF(ax+b)+c
if∫f(x)dx=F(x)+c]
=−3xcos3x+31∫cos3xdx
=−3xcos3x+31[3sin3x]+c
∫xsin3x=−x3cos3x+91sin3x+c
∫If(x)IIg(x)dx
=If(x).∫IIg(x)dx−∫If′(x)(∫IIg(x)dx)dx
I=∫xlogxdx
Solution:
I=∫IxIIlogxdx
=x(∫logxdx)−∫1⋅(∫logx)dx
=x∫logxdx−∫(∫logxdx)dx
∫logxdx= ?
I=∫IIxIlogxdx
=logx⋅∫xdx−
∫x1×(∫xdx)dx
=logx⋅2x2−∫x1×2x2dx
=2x2logx−21∫xdx
=2x2logx−21×2x2+c
I=2x2logx−4x2+c
I=∫IIxIsin−1xdx
Solution:
=sin−1x⋅2x2−∫1−x21⋅2x2dx
=2x2sin−1x−21∫1−x2x2dx
=2x2sin−1x−21∫1−x2−(1−x2)+1dx
=2x2sin−1x+21∫1−x2dx - 21∫1−x21dx
I1=∫1−x2dx,
I2=∫1−x21dx
Put,x=sinθ
⇒θ=sin−1x
⇒1−x2=1−sin2θ=cosθ;
I1=∫cosθ.cosθdθ
[cos2θ=2cos2θ−1]
[cos2θ=2cos2θ−1]
I1=∫cos2θdθ
=21∫(cos2θ−1)dθ
=21(2sin2θ−θ)
=41sin2(sin−1x)−21sin−1x
I=2x2sin−1x−21.(42x1−x2−21sin−1x)−21sin−1x+c
I=2x2sin−1x−21.[2x1−x2−21sin−1x]−21sin−1x+c
Inverse trigonometric
Log function
Algebraic
Trigonometric
Exponential
∫IIxIlogxdx
I=∫logxdx
Solution:
=∫II1⋅Ilogxdx
=logx⋅x−∫x1.xdx
∫logxdx=xlogx−x+c
I=∫IxIIlogxdx
Solution
=x∫logxdx−∫1⋅(∫logxdx)dx
=x(xlogx−x)−∫(xlogx−x)dx
=x2logx−x2−∫xlogxdx+2x2+C
I=x2logx−2x2−I+C
I=2x2logx−4x2+C
I=∫tan−1xdx
Solution:
=∫II1⋅Itan−1xdx
=tan−1x⋅x−∫1+x21.xdx
=xtan−1x−∫1+x2xdx
[Put 1+x2=t⇒2xdx=dt⇒xdx=2dt]
=xtan−1x−21∫tdt
=xtan−1x−21log∣t∣+C
I=xtan−1x−21log1+x2+C
I2=∫emxsinnxdx
Solution:
I2=∫IIemxIsinnxdx
=sinnx⋅memx−∫ncosnxmemxdx
=memxsinnx−mn[∫IIemxIcosnxdx]
=memxsinnx−mn[cosnx⋅memx−∫n(−sinnx).memxdx]
I2=memxsinnx−m2nemxcosnx −m2n2∫emxsinnxdx
[∵I2=∫emxsinnxdx ]
⇒I2(1+m2n2)=m2memxsinnx−nemxcosnx
⇒I2=∫emxsinnxdx=m2+n21[msinnx−ncosnx]emx
1.
I=∫x2−a2dx
=∫II1⋅Ix2−a2dx
=x2−a2.x−∫2x2−a22x×xdx
=xx2−a2−∫x2−a2x2dx
I=xx2−a2−∫x2−a2dx−a2∫x2−a21dx
2I=xx2−a2−a2logx+x2−a2+c
I=∫5−(x+2)2dx
[Put,x+2=t⇒dx=dt ]
=∫5−t2dt
=2t5−t2+25sin−15t+C
=2x+21−4x+x2+25sin−15x+2+C