$I=\int {x} \log x d x$
Solution:
$ I=\int \underset{I}{x} \underset{II}\log x d x $
$=x\left(\int \log x d x\right)- \int 1 \cdot\left(\int \log x\right) d x $
$ =x {\int \log x d x}-{\int\left(\int \log x d x\right) d x}$
$ \int \log x d x=\text { ? }$
$I=\int \underset{II}{x} \underset{I}\log x d x$
$ =\log x \cdot \int x d x-$
$ \int \frac{1}{x} \times\left(\int x d x\right) d x$
$ =\log x \cdot \frac{x^2}{2}-\int \frac{1}{x} \times \frac{x^2}{2} d x $
$ =\frac{x^2}{2} \log x-\frac{1}{2} \int x d x$
$ =\frac{x^2}{2} \log x-\frac{1}{2} \times \frac{x^2}{2}+c$
$ I=\frac{x^2}{2} \log x-\frac{x^2}{4}+c$
[Put $1+x^2=t \Rightarrow 2 x d x=d t \Rightarrow x d x=\frac{d t}{2}$]
$=x \tan ^{-1} x-\frac{1}{2} \int \frac{d t}{t}$
$=x \tan ^{-1} x-\frac{1}{2} \log |t|+C$
$ I=x \tan ^{-1} x-\frac{1}{2} \log \left|1+x^2\right|+C $