I=∫4x−x22x−1dx
Solution:
2x−1=Adxd(4x−x2)+B
2x−1=A(4−2x)+B
2=−2A⇒A=−1,
4A+B=−1⇒B=3
I=∫4x−x2−1(4−2x)+3dx
=−∫4x−x24−2xdx+3∫4x−x2dx
[4x−x2=−(x2−4x)=4−(x2−4x+4)=4−(x−2)2 ]
I=∫x6+a6x2dxa>0
Solution:
=∫(x3)2+a6x2dx
[x3=t⇒3x2dx=dt]
=∫31t2+(a3)2dt
=31.logt+t2+a3)2+c
=31logx3+x6+a6+c
I=∫Q(x)P(x)dx
∫x2−a2dx;
P=1,Q=x2−a2
Q=(x−a)(x+a)
Froms
a=b,b=c a=c
Partial fractions
1 x−aA+x−bB
∫x2−a2dx=2a1log∣x+ax−a∣+C
Solution:
(x−a)(x+a)1=(x−a)A+(x+a)B
⇒1=A(x+a)+B(x−a)
A+B=0,a(A−B)=1
A=−B,−2aB=1
⇒B=−2a1⋅A=2a1
(x−a)(x+a)1=2a1[x−a1−x+a1]
=2a1[log∣x−a∣−log∣x+a∣]+c
∫x(x4+1)dx
Solution
=∫x4(x4+1)x3dx
[x4=t⇒4x3dx=dt⇒x3dx=4dt
=41∫t(t+1)dt
{t(t+1)1=tA+t+1B⇒1=A(t+1)+Bt⇒A=1,B=−1}
=41∫(t1−t+11)dt
=41[[log∣t∣−log∣t+1∣]+C
=41[log∣x4+1x4∣]+C.
I=∫(x2+3)(x2+4)(x2+1)(x2+2)dx
Solution:
Integrand =(x2+3)(x2+4)(x2+1)(x2+2)
Put x2=y
Integrand = (y+3)(y+4)(y+1)(y+2)=y2+7y+12y2+3y+2
y2+7y+12y2+3y+2=1+y2+7y+12−4y−10
⇒I=∫(x2+3)(x2+4)(x2+1)(x2+2)dx
=∫[1−(x2+3)(x2+4)4x2+10]dx
[(y+3)(y+4)4y+10=(y+3)A+(y+4)B
A=-2, B=6
=∫1dx−{∫x2+3−2dx+∫x2+46dx}
=x+2∫x2+31dx−6∫x2+41dx
=x+2.31tan−13x−6.21.tan−12x+C
I=∫(x−2)(x2+1)x+1dx
(x−2)(x2+1)x+1=x−2A+x2+1Bx+C
⇒x+1=A(x2+1)+(Bx+C)(x−2)
A+B=0,−2B+C=1,A−2C=1
A=53,B=−53,C=−1/5
I=∫[53⋅x−21+x2+1−53x−51]dx
=53∫x−2dx−51∫x2+13xdx−51∫x2+11dx
=53log∣x−2∣−53×21logx2+1−51tan−1x+C
dxd(uv)=udxdv+dxduv
uv=∫udxdvdx+∫dxduvdx
∫udxdvdx=uv−∫dxduvdx
u=f(x);dxdv=g(x)
∫f(x)g(x)dx=f(x)∫g(x)dx−∫[f′(x).∫g(x)]dxdx
f(x) = 1st function
g(x) = second function
Int. = first function X integral of second fn - Integral {diff. of first fn X Integral of second fn}
I=∫xexdx
x - 1st function
ex - 2nd function
I=x⋅ex−∫1⋅exdx
I=xex−ex+c
Remark:-
∫xexdx
= x⋅(ex+c)−∫1⋅(ex+c)dx
= xex+cx−ex−cx+c1
= xex−ex+c1