- $ I =\int \frac{d x}{ax^2+b x+c} $
- Solution:
- $ a x^2+b x+c =a\left(x^2+\frac{b}{a} x+\frac{c}{a}\right) $
- $ =a(\underbrace{x^2+2 \times \frac{b}{2 a} \times x+\frac{b^2}{4 a^2}}-\frac{b^2}{4 a^2}+\frac{c}{a}) $
- $ =a\left[\left(x+\frac{b}{2 a}\right)^2+\left(\frac{c}{a}-\frac{b^2}{4 a^2}\right)\right] $
- $ x+\frac{b}{2 a}=X, \quad \frac{c}{a}-\frac{b^2}{4 a^2}= \pm k^2, d x=d X $
- $ I=\frac{1}{a} \int \frac{d X}{X^2 \pm k^2} $