I=∫x2+a2dx
Solution
x=atant⇒dx=asec2tdt
x2+a2=a2tan2t+a2=a2(tan2t+1)=a2sec2t
=∫a2sec2tasec2tdt
=a1∫dt=a1t+c=a1tan−1ax+c
∫x2+a2dx=a1tan−1ax+c
I=∫x2+a2dx
solution:
x=atant⇒dx=asec2tdt
t=tan−1ax,x2+a2=a2sec2t
I=∫a2sec2tasec2tdt=∫sectdt
[∫sectdt=log∣sect+tant∣+c ]
=log∣sect+tant∣+c
[sec2t=1+tan2t]
[sect=1+tan2t]
=log∣1+tan2t+tant∣+c
=log1+a2x2+ax+C
=logx+x2+a2−log∣a∣+c
I=∫x2−a2dx
Solution:
[A2−B2=(A−B)(A+B)]
=∫(x−a)(x+a)dx
{∵(x−a)(x+a)1=2a1[(x+a)(x−a)2a]=2a1[(x+a)(x−a)(x+a)−(x−a)]=2a1[x−a1−x+a1]}
=2a1∫[x−a1−x+a1]dx
=2a1∫x−adx−2a1∫x+adx
=2a1log∣x−a∣−2a1log∣x+a∣+C
I=2a1logx+ax−a+C
∫a2−x2dx
solution:
=∫2a1[(a−x)(a+x)(a−x)+(a+x)]dx
=2a1[∫a+xdx+∫a−xdx][∫a−xdx=?]
=2a1[log∣a+x∣+−1log∣a−x∣]+c
=2a1[log∣a+x∣−log∣a−x∣]+c
∫a2−x2dx=2a1loga−xa+x+C
I=∫x6+43x2dx
Solution:
=∫(x3)2+223x2dx[x3=t→3x2dx=dt]
=∫t2+22dt=21tan−1(2t)+C
[∵∫x2+a2dx=a1.tan−1ax+c]
.
∫1−x6x2dx
=∫1−(x3)2x2dx
[x3=t]
[3x2dx=dt]
[x2dx=3dt]
=∫1−t213dt
=31∫1−t2dt
[∫a2−x2dx=2a1loga−xa+x+c]
=3×21log1−t1+t+C
I=∫a2−x2dx
Solution
x=asint,dx=acostdt
I=∫a2(1−sin2t)acostdt=∫dt
=t+C
I=sin−1ax+C
I=∫x2−a2dx
Solution
x=asect→dx=asecttantdt
x2−a2=a2sec2t−a2
=a2(sec2t−1)
=a2tan2t
I=∫atantasect⋅tant⋅dt=∫sectdt
=log∣sect+tant∣+C
[x = asect]
[ sect=ax]
[tant=sec2t−1=a2x2−1]
=logax+a2x2−1+c
∫x2−a2dx=logx+x2−a2+c
I=∫ax2+bx+cdx
Solution:
ax2+bx+c=a(x2+abx+ac)
=a(x2+2×2ab×x+4a2b2−4a2b2+ac)
=a[(x+2ab)2+(ac−4a2b2)]
x+2ab=X,ac−4a2b2=±k2,dx=dX
I=a1∫X2±k2dX
I=∫9x2+6x+5dx
Solution:
9x2+6x+5=9(x2+96x+95)
=9(x2+32x+95)
=9(x2+2×31×x+91−91+95)
=9((x+31)2+(32)2)
I=∫9((x+1/3)2+(2/3)2)dx=91∫X2+(2/3)2dX
Solution:
(Put x+31=X)
=91×2/31tan−12/3X+C
=61tan−123(x+31)+C
=61tan−1(23x+1)+C
.
I=∫9x2+6x+5dx
Solution:
9x2+6x+5=(3x)2+2(3x)+1+4=(3x+1)2+4
I=∫(3x+1)2+4dx
[ 3 x+1=t ]
[ 3 d x=d t ]
=31∫t2+22dt=31⋅21tan−12t+C
=61tan−1(23x+1)+C
∫ax2+bx+cdx
Solution:
ax2+bx+c∼x2±k2
∼k2−x2
Write ax2+bx+c into either of the form x2±k2(if a is positive) , or ,k2−x2(if a is negative)
∫x2+2x+2dx
Solution:
=∫(x+1)2+1dx
[x+1=t]
[d x=dt]
=∫t2+1dt
=logt+t2+1+C
[∵∫x2+a2dx=log∣x+(x2+a2)+C]
=logx+1+(x+1)2+1+c
=logx+1+x2+2x+2+c
I1=∫ax2+bx+cpx+qdx
I2=∫ax2+bx+cpx+qdx
Solution:
px+q=Adxd(ax2+bx+c)+B
px+q=A(2ax+b)+B
p=2aA,q=Ab+B
A=?B=?
I1=A∫ax2+bx+cdxd(ax2+bx+c)dx+B∫ax2+bx+c1dx
→ can be evaluated.
I1=A∫ax2+bx+cdxd(ax2+bx+c)dx+B∫ax2+bx+c1
→ can be evaluated.
I=∫3x2+2x−16x−2dx
6x−2=Adxd(3x2+2x−1)+B
6x−2=A(6x+2)+B⇒A=1,B=−4
I=∫3x2+2x−11⋅dxd(3x2+2x−1)dx+(−4)∫3x2+2x−11dx
[Put 3x2+2x−1=t]
=∫tdt−4×31∫x2+32x−1dx
[x2+32x−1=(x+31)2−94]
=logt+C1−34∫(x+1/3)2−(2/3)2dx
=log3x2+2x−1−34⋅2.321.logx+1/3+2/3x+1/3−2/3+C1+C2
=log3x2+2x+1−log3x+33x−1+C