- $I=\int \sin (a x+b) \cos (a x+b) d x$
- solution:
-
case1
- $ \int \sin x \cos x d x$
- $ =\frac{1}{2} \int 2 \sin x \cos x d x$
- $ =\frac{1}{2} \int \sin 2 x d x$
- $ =-\frac{1}{2} \frac{\cos 2 x}{2}+c$
- $ I=-\frac{1}{4} \frac{\cos 2(a x+b)}{a}+c$