I=∫sin(ax+b)cos(ax+b)dx
solution:
case1
∫sinxcosxdx
=21∫2sinxcosxdx
=21∫sin2xdx
=−212cos2x+c
I=−41acos2(ax+b)+c
case2
ax+b=t⇒adx=dt
I=∫sintcostadt
=a1∫sintcostdt
sint=u⇒costdt=du
=a1∫udu=2au2+c
=2asin2(ax+b)+c
cos2θ=1−2sin2θ
I=∫xtan4xsec2xdx
solution:
Putx=t;21x−21dx=dt
=∫tan4t.sec2t.2dt
[Puttant=u, sec2tdt=du]
=2∫u4du
=25u5+c=52tan5x+c.
Alter.
tanx=t⇒sec2x×2x1dx=dt
xsec2xdx=2dt
I=2∫t4dt=52t5+c
=52tan5x+c
I=∫105x⋅5x⋅dx
[Put5x=t5xloge5dx=dt]
=∫10tloge5dt
=loge51⋅∫10tdt=loge51loge1010t+C
=loge51loge10105x+C
i)
I=∫tanxdx=∫cosxsinxdx
cosx=t⇒−sinxdx=dt
I=∫−tdt=−log∣t∣+C
=−log∣cosx∣+c=log∣secx∣+C
∫tanxdx=log∣secx∣+C
ii) ∫cotxdx=log∣sinx∣+C
iii) I=∫secxdx=∫secx+tanxsecx(secx+tanx)dx
=∫secx+tanxsec2x+secxtanxdx
[Put , secx+tanx=t, ⇒(sec2x+secx.tanx)dx=dt]
=∫tdt
=log∣t∣+C
∫secxdx=log∣secx+tanx∣+C
iv) ∫cosecxdx
=∫cosecx+cotxcosecx(cosecx+cotx)dx
Choose
cosecx+cotx=t
(−cosecxcotx−cosec2x)dx=dt
=−∫tdt=−log∣t∣+C
=logcosecx+cotx1+C
[∵cosec2x−cot2x=1]
∫sin(x+a)sinxdx
x+a=t⇒dx=dt
∫sintsin(t−a)dt=∫(sintsintcosa−costsina)dt
=cosa∫1⋅dt−sina∫cottdt
[∵∫cottdt,=log∣sint∣+c]
=cosa(t+c1)−sina(log∣sint∣+c2)
=(x+a+c1)cosa−sina(log∣sin(x+a)∣+c2)
=xcosa−sinalog∣sin(x+a)∣+c
Example:
I=∫sin3xcos3xdx
=∫sin3x⋅cos2x⋅cosxdx, [∵sin2x+cos2x=1]
=∫sin3x(1−sin2x)cosxdx
=∫t3(1−t2)dt [Putsinx=t,cosxdx=dt]
Example: I=∫sin4xsin8xdx
=21∫2sin4xsin8xdx
I=21∫[cos(4−8)x−cos(4+8)x]dx
=21∫(cos4x−cos12x)dx
=21[4sin4x−12sin12x]+C