Take an example:
find anti-derivative F(x) of function
f(x)=5x4+2 s.t. F(1)=5
dxd(x5+2x)=5x4+2
F(x)=x5+2x+c
F(1)=5⇒1+2+c=5⇒c=2
F(x)=x5+2x+2
b) ∫f′(x)dx=f(x)+c,c∈R.
Proof:
(a) dxd(F(x))=f(x)⇒∫f(x)dx=F(x)+c
dxd[∫f(x)dx]=dxd[F(x)+c]=dxdF+0
dxd∫f(x)dx=f(x).
(b) f′(x)=dxdf(x)⇒∫f′(x)dx=f(x)+c,c∈R
⇒dxd[∫f(x)dx−∫g(x)dx]=0
⇒∫f(x)dx−∫g(x)dx=C
{∫g(x)dx+C1,C1∈R} & {∫f(x)dx+C2,C2∈R}
∫f(x)dx=∫g(x)dx.
∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
Proof: dxd[∫(f(x)+g(x))dx]
=f(x)+g(x)......(i)
dxd[∫f(x)dx+∫g(x)dx]=dxd∫f(x)dx+dxd∫g(x)dx
=f(x)+g(x)… (ii)
∫kf(x)dx=k∫f(x)dxk→ constant
dxd∫kf(x)dx=kf(x)
dxd[k∫f(x)dx]=kdxd∫f(x)dx=kf(x)
∫kf(x)dx=k∫f(x)dx
for constants k1,k3…kn functions;
f1(x),f2(x),…fn(x),
∫[k1f1(x)+k2f2(x)+⋯+knfn(x)]dx
=k1∫f1(x)dx+k2∫f2(x)dx+⋯++kn∫fn(x)dx
Example I=∫(ax2+bx+c)dx
=a∫x2+b∫xdx+c⋅∫1⋅dx
I=a3x3+b2x2+cx+c1
dxd(n+1xn+1)=xn;∫xndx=n+1xn+1+c,n=−1
dxd(x)=1;∫1⋅dx=x+C
dxd(sinx)=cosx;∫cosxdx=sinx+C
dxd(−cosx)=sinx;∫sinxdx=−cosx+C
dxd(tanx)=sec2x;∫sec2xdx=tanx+C
dxd(−cotx)=cosec2x;∫cosec2xdx=−cotx+C
dxd(secx)=secxtanx;∫secxtanxdx=secx+C
dxd(−cosecx)=cosecxcotx;∫cosecxcotxdx=-cosecx+C
dxd(sin−1x)=1−x21;∫1−x21dx=sin−1x+C
dxd(−cos−1x)=1−x21;∫1−x21dx=−cos−1x+C
dxd(tan−1x)=1+x21;∫1+x21dx=tan−1x+C
dxd(−cot−1x)=1+x21;∫1+x2dx=−cot−1x+C
dxd(sec−1x)=xx2−11;∫xx2−1dx=sec−1x+C
dxd(−cosec−1x)=xx−11;∫xx2−1dx=−cosec−1x+C
dxd(ex)=ex;∫exdx=ex+C
dxd(xenx)=enx;
∫enxdx=xenx+C,n=0
dxd(log∣x∣)=x1;
∫x1dx=log∣x∣+C
Remark: ∫e−x2dx
I=∫(4e3x+1)dx
=4∫e3xdx+∫1⋅dx (∫e3xdx=3e3x+c)
=43e3x+4c1+x+c2
=34e3x+x+4c1+c2
I =34e3x+x+c
∫x−1x3−x2+x−1dx
= ∫x−1x2(x−1)+(x−1)dx
= ∫(x2+1)dx
= 3x3+x+C
Diff | Int. |
---|---|
Operator | Operator |
dxdf(x)=f′(x) | ∫f(x)dx=F(x)+c |
Linearity Prop. | Linearity Prop |
Unique | Unique upto a constant |
dxdy(x0,y0) | No such meaning |
Limiting process | Limiting process |
I=∫f(x)dx
x → independent Variable 't'
x=g(t)⇒dtdx=g′(t)
dx=g′(t)dt
I=∫f(g(t))g′(t)dt
∫f(x)dx=∫f(g(t))g′(t)dt
I= ∫1+x22xdx
define t=1+x2⇒dt=2x⋅dx.
=∫tdt=log∣t∣+c
=log1+x2+c
I= ∫sin(ax+b)dx
ax+b=t⇒adx=dt
I= a1∫sintdt
= a1(−cost)+C
= −acos(ax+b)+C