Given f′(x), can we find the f(x)?
Area A ?
f(x)=x,[0,a]a>0
A(x)0<x<a
A(x)=21 ×x×x
A(x)=21x2
A(a)=21a2,A(0)=0
dxd(A(x))=dxd(2x2)=22x=x
dxd(A(x))=x
Suppose f(x) be a continuous function [a,b] A(x) is the area function, then
A′(x)=f(x)∀x∈[a,b].
dxd(sinx+1)=dxdsinx+dxd1
=dxdsinx=cosx
cosx has (sinx+1) also as antiderivative.
dxd(sinx+c)=cosx
sinx+c is anti derivative of cosx
c - arbitrary constant, c∈R
dxd(F(x))=f(x) then
dxd(F(x)+c)=f(x)
{F(x)+c:c∈R}
Set of all the anti-derivative of f(x) or family of one parameter curves.
Integral:
∫f(x)dx=F(x)+c, c∈R
∫ = integral
f(x) = integrand
x = variable of integration
F(x) = integral/ anti-derivative
c = arbitrary constant.
Remark
∫f(t)dt=∫f(x)dx
Find Integral (anti-derivative) of following functions by inspection:
i)
f(x)=sin2x
dxd(−2cos2x)=sin2x
−21cos2x+c
= Anti derivative of sin2x
f(x)=e4x
dxd(4e4x)=e4x
⇒ Anti derivative of e4x=4e4x+c.
3.
f(x)=sin2x−4e3x
dxd(−21cos2x−4⋅3e3x)=sin2x−4e3x
⇒ Anti derivative of
sin2x−4e3x=−21cos2x−34e3x+c
f′(x)=g′(x)∀x∈I
then f(x)−g(x)= constant
h(x)=f(x)−g(x)∀x
h′(x)=f′(x)−g′(x)=0 ∀x
h′(x)=0⇒h(x)= constant
dxd(sin−1x)=1−x21
dxd(cos−1x)=−1−x21
dxd(sin−1x)=1−x21=dxd(−cos−1x)
sin−1x+cos−1x= constant
sin−1x+cos−1x=π/2
Let f(x)=ex and now we see tangent at the point P0,P1,P2.. and the points Q0,Q1,Q2..
P0=(0,0)
dxdy∣P0=dxd(ex−1)∣P0=ex∣P0=1,
Q0=(1,e−1)
dxdy∣Q0=dxd(ex−1)∣Q0=ext∣Q0=e1=e
dxdy∣Q1=e
P1=(0,1)
dxdy∣P1=dxd(ex)∣P1=ex∣P1=1
Q1=(1,e), dxdy∣Q1=dxd(ex)∣Q1=ex∣Q1=e
A(x)=∫0xxdx=2x2
Here, ∫0xx = definite Integral.
def n of Integrals.
anti-derivative or Integrals.
graphical representation of these Integrals.