- Let $f(x)=e^x$ and now we see tangent at the point $P_ 0, P_ 1, P_ 2..$ and the points $Q_ 0,Q_ 1,Q_2 ..$
- ${P_0} = (0,0)$
- $ \frac{d y}{d x}|_ {P_ 0} = \frac{d}{d x} \(e^x {-1})|_ {P_ 0}= {e^x|}_ {P_0}=1,$
- ${Q_0} = (1,e-1)$
- $\frac{d y}{d x}|_ {Q_ 0}=\frac{d}{d x}(e^x-1)|_ {Q_ 0} = e^xt|_ {Q_0}=e^1=e $
- $\frac{d y}{d x}|_{Q_1}=e$
- ${P_1} = (0,1)$
- $ \frac{d y}{d x}|_ {P_ 1} =\frac{d}{d x} \(e^x)|_ {P_ 1}= {e^x|}_ {P_ 1}=1$
- ${Q_ 1} = (1,e), ~ \frac{d y}{d x}|_ {Q_ 1} =\frac{d}{d x} \(e^x)|_ {Q _ 1} ={e^x|}_{Q _1}= e$
![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/49e3402f-c181-4c38-cf1b-94455112be00/public)