f(x) continuous on [a,b],f(x)>0
m(b−a)⩽∫abf(x)dx⩽M(b−a)
m⩽f(a)⩽M∀x[a,b]
2e−2<∫02e−xdx<2
m(b−a)⩽∫abf(x)dx⩽M(b−a)
continuous on [a,b]
Evaluate
∫−1/21/2[[x]+log(1−x1+x)]dx
=∫−1/21/2[x]dx+∫−1/21/2log(1−x1+x)dx
log(1−x1+x)=h(x)
h(−x)=log(1+x1−x) =−log(1−x1+x) =−h(x)
∴∫−1/21/2log(1−x1+x)dx=0
∴∫−1/21/2[x]dx+∫−1/21/2log(1−x1+x)dx=∫−1/21/2[x]dx
=∫−1/20(−1)dx +∫01/2(0)dx =−x∣−1/20=−21
Evaluate
I=∫−ππ1+axcos2xdx,a>0
x=−tdx=−dtI=∫−π−π1+a−t−cos2(−t)dt
I=∫−ππ1+axcos2xdx......(1)=∫−ππ1+a−tcos2tdt=∫−ππ1+axaxcos2xdx......(2)
(1) +(2)
2I=∫−ππ(1+ax)(1+ax)cos2xdx 2I=∫−ππcos2xdx=2∫0π2(1+cos2x)dx=π⇒I=2π
Compute
I=∫π/6π/31+tanxdx=∫π/6π/31+tan(2π−x)dx
∫abf(x)dx=∫abf(a+b−x)dx
I=∫π/6π/31+cotxdx=∫π/6π/31+tanx1+tanx−1)dx
I=∫π/6π/31dx−∫π/6π/31+tanx1dx
2I=3π−6π⇒I=12π
Evaluale ∫0π/4log(1+tanx)dx ∫0af(x)dx=∫0af(a−x)dx
solution:
=∫0π/4log(1+tan(4π−x))dx
=∫0π/4log(1+1+tan4πtanxtan4π−tanx)dx
=∫0π/4log(1+1+tanx1−tanx)dx =∫0π/4log(1+tanx2)dx
I=∫0π/4log(1+tanx2)dx.....(2)
I=∫0π/4log(1+tanx)dx.....(1)
(1) +(2)
2I=∫0π/4[log(1+tanx2)+log(1+tanx)]dx
2I=∫0π/4log[1+tanx2×(1+tanx)]dx
2I=∫0π/4log2dx=log2 4π
I=(8π)log2
I=∫−ππ(1+cos2x)2x(1+sinx)dx Compute I.
solution:
I=∫−ππ1+cos2x2xdx+∫−ππ1+cos2x2xsinxdx
f(x)=1+cos2x2x
f(−x)=1+cos2(−x)−2x =1+cos2x−2x=−f(x)
∫−aaf(x)dx=0
[f(x) is odd ]
I=∫−ππ1+cos2x2xsinxdx
g(x)=1+cos2x2xsinx
g(−x)=1+cos2(−x)2(−x)sin(−x)=1+cos2x2xsinx
=g(x)
∫−aag(x)dx=2∫0ag(x)dx
∫0af(x)dx=∫0af(a−x)dx
I=2∫0π1+cos2x2xsinx...(1)=2∫0π1+(cos2(π−x))2(π−x)sin(π−x)dx
I=4∫0π1+cos2x(π−x)sinxdx...(2)
2I=4∫0π1+cos2xπsinxdx
Let cosx=t
−sinxdx=dt
I=2π∫1−11+t2−dt
=2π∫−111+t2dt
I=2πtan−1t∣−11
=2π[4π−(−4π)]
I=2π2π=π2
Evaluate:
I=∫0π1+cosαsinxxdx,0<α<π
solution:
I=∫0π1+cosαsinxxdx...(1)
∫0af(x)dx=∫0af(a−x)dx
I=∫0π1+cosαsin(π−x)(π−x)dx...(2)
2I=∫0π1+cosαsinxπdx=π∫0πsin22x+cos22x+cosα 2sin2xcos2xdx
2I=π∫0πtan22x+1+2tan2xcosαsec22xdx
tan2x=t sec22xdx=2dt tan0=0 tan2π=∞
I=2π∫0∞t2+1+2tcosα+cos2α−cos2α2dt =π∫0∞(t+cosα)2+sin2αdt =πsinα1tan−1(sinαt+cosα)∣0∞
I=sinαπ[tan−1∞−tan−1cotα],0<α<π =sinαπ[2π−(2π−α)]
I=sinαπα,0<α<π
I=∫0π/2cos4x+sin4xxsinxcosxdx...(1)
Solution:
∫0af(x)dx
=∫0af(a−x)dx
=∫0π/2cos4(2π−x)+sin4(2π−x)(2π−x)sin(2π−x)cos(2π−x)dx
I=∫0π/2sin4x+cos4x(2π−x)cosxsinxdx...(2)
(1)+(2)
2I=∫0π/2cos4x+sin4x2πsinxcosxdx
I=4π∫0π/2cos4x+sin4xsinxcosxdx =4π∫0π/21+tan4xcos4xsinxcosxdx
I=4π∫0π/21+tan4xtanxsec2xdx tan2x=t
2tanxsec2xdx=dt tan0=0 tan2π=∞
I=4π∫t=0t=∞1+t22dt
I=8π∫0∞1+t2dt=8πtan−1t0∞
I=8π[tan−1∞−tan−10] I=16π2
∫0π/49+16sin2x(sinx+cosx)dx
=∫0π/425−16+16sin2xsinx+cosxdx
=∫0π/425−16(1−sin2x)(sinx+cosx)dx
=∫0π/425−16(sin2x+cos2x−2sinxcosx)(sinx+cosx)dx
=∫0π/425−16(sinx−cosx)2(sinx+cosx)dx
Let sinx−cosx=t (cosx+sinx)dx=dt
x=4π,t=0 x=0,t=−1
=∫−1025−16t2dt =161∫−10(45)2−t2dt
∵∫a2−x2dx=2a1log∣a−xa+x∣
I=1612×451(log∣45−t45+t∣)∣−10
=401[log1−log∣3/41/4∣]
=401(−1)log(91)
=401log9=401log32=402log3
=201log3
Sketch this region bounded between y=x2 and y=1+x22. Find out its area.
Solution:
y=1+x22;y′=(1+x2)2−22x=(1+x2)2−4x
∀x>0,y′<0
∀x<0,y′>0
y(0)=1+02=2 y′(0)=0
x2=1+x22
y=1+y2
y2+y−2=0
y=2−1±1+8=2−1±3 y=−2,1
y=1=x2⇒x=±1
Required Area =∫−11 elementary area [1+x22−x2]dx
=2∫−111+x2dx−∫−11x2dx
=2tan−1x∣−11
−3x3∣−11
=2(4π−(−4π)−31(1−(−1))=π−32
Sketch the curves and identify the region bounded by x=21,x=2,y=logx and y=2x.
∫212[2x−logx]dx
=[log22x−(xlogx−x)]∣212
=log222−2log2+2−log22−21log21+21
=log24−2+23−25log2