Find out area of the region described by
(x,y):y2⩽2x,y⩾4x−1
Solution:-
y2⩽2x.
y2=2x
2x=−2
y2=0
0>−2
y⩾4x−1
y=4x−1
y⩾4x−1
4x−1=−1
y=1
1>-1
4x−1∣x=0=−1y∣−2=−2
-2<-1
y2=2x,y=4x−1
y2⩽2x,y⩾4x−1
y2=2x,y=4x−1,y=42y2−1
2y2−y−1=0,y=41±1+8=41±3=1,−21
∫−1/21(4y+1−2y2)dy
=41(2y2+y)∣−1/21−21 3y3∣−1/21
=41(21+1−(81−21))−2131(1−(−81))
=41(21+1−81+21)−61(1+81)
=41(815)−489=3215−163=329
y=sinx+cosx,y=∣cosx−sinx∣
Find out area enclosed by above two curves and the lines x=0 and x=2π.
solution:
y=sinx+cosx
y(0)=1,y(2π)=1
y′=cosx−sinx>0,[0,4π)
y′<0(4π,2π]
y′(4π)=0,y(4π)=2
y=cosx−sinx,[0,4π]
y′=−sinx−cosx<0,[0,4π]
[4π,2π]→y=−(cosx−sinx)
y′=sinx+cosx>0,[4π,2π]
y(0)=1,y(4π)=0
y(2π)=1
A=∫0π/4[sinx+cosx−(cosx−sinx)dx
+∫π/4π/2[sinx+cosx−(−cosx+sinx)dx]
=2∫0π/4sinxdx+2∫π/4−π/2cosxdx
=2(−cosx)∣0π/4+2(sinx)π/4π/2
=2(−21+1)+2(1−21)=4(1−21)
Required Area =4(1−21)Required Area =2A
y=x−bx2,b>0
y=bx2,b>0
bx2=x−bx2
bx2+bx2=xx=0
x2(b1+b2)=x x=1+b2b
Area Required
=∫0b/1+b2[x−bx2−bx2]dx
Required Area =2x2−3bx3−3bx30b/1+b2
=2(1+b2)2b2−3b(1+b2)3b3−3b(1+b2)3b3
=2(1+b2)2b2−3(1+b2)3b2(1+b2)
= 2(1+b2)2b2−3(1+b2)2b2
= 63−2(1+b2)2b2=6(1+b2)2b2
A=61.(1+b2)2b2,b>0
for which value of b Area is maximum.
dbdA=61(1+b2)4(1+b2)22b−b22(1+b2)2b=61(1+b2)41+b2[2b+2b3−4b3]=61(1+b2)31(2b−2b3)=31b(1+b2)3(1−b2)
dbdA=31b(1+b2)3(1−b2)
dbdA=0,b=0,b=−1,b=+1,b>0
So only possible value of " b " =1
b>1,dbdA<0
0<b<1,dbdA>0
at b=1 Area is maximum
dbdA=31b((1+b2)(1−b2))3
I=∫24logx2+log(36−12x+x2)logx2dx
solution:
=∫242logx+log(6−x)22logxdx
I=∫242logx+2log(6−x)2logxdx⋯⋯(1)
∫abf(x)dx=∫abf(a+b−x)dx
I=∫24log(6−x)+log(6−(6−x))log(6−x)dx
I=∫24log(6−x)+logxlog(6−x)dx⋯⋯(2)
∫−π/2π/2[x2+log(π+xπ−x)]cosxdx=∫−π/2π/2x2cosxdx+∫−π/2π/2log(π+xπ−x)cosxdx=2∫0π/2x2cosxdx+0
h(x)=log(π+xπ−x)cosx
h(−x)=log(π−xπ+x)cos(−x)
=−log(π+xπ−x)cosx
=−h(x)∫−π/2π/2h(x)dx=0
I=2∫0π/2x2cosxdx
=2[x2(sinx)0π/2−∫0π/22xsinxdx]
=2[4π2−0−2x(−cosx)∣0π/2+∫0π/22(−cosx)dx
=2[4π2−2sinx∣0π/2]=2[4π2−2]=2π2−4
∫log(2)log(3)sinx2+sin[log6−x2]xsin(x2)
x2=t,2xdx=dt
=∫t=log2t=log3sint+sin[log6−t]sint(21dt)
I=21∫log2log3sint+sin[log6−t]sintdt
∵∫abf(x)dx=∫abf(a+b−x)dx
I=21∫log2log3sin(log6−t)+sintsin(log6−t)dt2I=21∫log2log3sin(log6−t)+sintsint+sin(log6−t)dt2I=21∫log2log3dt=21[log3−log2]2I=21log(23),I=41log(23).