###
Definite Integral L-5
###
Definite integral lecture-5
###
Definite Integral L-5
###
Problem-1
- Compute the area bounded between $y^2=4 a x$ and $y=m x,(a>0, m>0)$. -
solution
- $[\sqrt{4a x}-m x] d x=$ elementary area - $ \text { Required } \left.A=\int (\sqrt{4 a x}-m x\right) d x$ - $ m^2 x^2=4 a x$ - $ \left(m^2 x-4 a\right) x=0$ - $x=\frac{4 a}{m^2}, x=0$
###
Definite Integral L-5
###
Solution
- $ \int_0^{\frac{4 a}{m^2}}(\sqrt{4 a x}-m x) d x$ - $ = \left.\sqrt{4 a} \frac{x^{3 / 2}}{3 / 2}\right|_0 ^{\frac{4 a}{m^2}}-\left.\frac{m}{2} x^2\right|_0 ^{4 a / m^2}$ - $ = \frac{2 \sqrt{4 a}}{3} \frac{4 a}{m^2} \sqrt{\frac{4 a}{m^2}}-\frac{m}{2} \frac{16 a^2}{m^4}$ - $ = \frac{32 a^2}{3 m^3}-\frac{8 a^2}{m^3}=\frac{8 a^2}{3m^3}$
###
Definite Integral L-5
###
Problem-2
- Area bounded between $x$-axis, - $ y=2\left(x^3-x^2-2 x\right) \text { and } x=-1 \text { to } x=2 \text {.}$ - solution: - $ y=2 x\left(x^2-x-2\right)$ - $ y=2 x(x+1)(x-2)$ - $ -1
0, x<0$ - $ (x-2)<0$ - $ y>0$ - $ 2>x>0 \quad x+1>0 \quad x-2<0$ - $ y<0,0
###
Definite Integral L-5
###
Solution
- $ y=2(x^3-x^2-2x)$ - $ A_1=\int_{-1}^0 2\left(x^3-x^2-2 x\right) d x $ - $ =2\left(\frac{x^4}{4}-\frac{x^3}{3}-2 {\frac{x^2}{2}}\right)_{-1}^0 $ - $ =-2\left(+\frac{1}{4}+\frac{1}{3}-1\right)$ - $=-2\left(\frac{7}{12}-1\right)$ - $=\frac{-2(-5)}{12} $ - $ =\frac{5}{6} $ - $ A_2=\int_0^2 2\left(x^3-x^2-2 x\right) d x $ - $ =\left.2\left(\frac{x^4}{4}-\frac{x^3}{3}-x^2\right)\right|_0 ^2=2\left(4-\frac{8}{3}-4\right)=-\frac{16}{3} $ - Total Area= $ A_1 + |A_2|$ - $ =\frac{5}{6}+\frac{16}{3}=\frac{37}{6} $
###
Definite Integral L-5
###
Problem-3
- Find out area bounded between - $y=2-x^2$ and $y=-x$ - $-x=2-x^2$ - $ x^2-x-2=0$ - $ x=\frac{1 \pm \sqrt{1+8}}{2}$ - $ x=2,-1$ - $\int_ {-1}^2\left[2-x^2-(-x)\right] d x= \int_{-1}^2[2-x^2+x] d x$ - = $ 2 x-\frac{x^3}{3}+\left.\frac{x^2}{2}\right|_{-1} ^2 = 4-\frac{8}{3}+2-\left(-2+\frac{1}{3}+\frac{1}{2}\right)$ - $ =8-\frac{8}{3}-\frac{5}{6} =8-\frac{16+5}{6} =8-\frac{21}{6} =\frac{9}{2}$
###
Definite Integral L-5
###
Problem-4
- Area bounded between $y=x \sqrt{4-x^2}$, - $x-axis$ and $x=-2$ and $x=+2$. - solution: - $ y=0, \quad x=0$ - $ y=0, \quad x= \pm 2$ - $ (0,2), y>0 $ - $ (-2,0), y<0$ - $ A=\left|A_1\right| +A_2$ - $A_2=\int_0^2 x \sqrt{4-x^2} d x $
###
Definite Integral L-5
###
Solution
- $ A_1=-A_2$ - $ A_2 =\int_0^2 x \sqrt{4-x^2} d x $ - [ $x^2 =t$ $\Rightarrow 2 x d x=d t$ - $\Rightarrow x=0, t=0;$ $ x=2, t=4$ - $ x d x =\frac{1}{2} d t$ ] - $\Rightarrow A_2 =\frac{1}{2} \int_0^4 \sqrt{4-t} d t=\frac{1}{2} {\frac{(4-t)^{3 / 2}} {-3/2}}|_0 ^4$ - $=-\frac{1}{3}\left[0-(4)^{3 / 2}\right]=+\frac{1}{3} \times 8=\frac{8}{3}$ - $ A_2=\frac{8}{3}$ $\Rightarrow A_1=-\frac{8}{3}$ - $ \text { Required } =\left|-\frac{8}{3}\right|+\frac{8}{3}=\frac{16}{3}$
###
Definite Integral L-5
###
Problem-5
- Area bounded between two parabolas - $y=x^2$ \& $y=8-x^2$ - solution: - [$ x^2=8-x^2 $ - $ 2 x^2=8$ - $ x^2=4, x= \pm 2$ - $ \int_{-a}^a f(x) d x=2 \int_0^a f(x) d x$ - $ \int_ {-2}^2\left(8-x^2-x^2\right) d x = \int_{-2}^2\left(8-2 x^2\right) d x$ - $= 2 \int_ 0^2\left(8-2 x^2\right) d x= \left.2\left(8 x-\frac{2}{3} x^3\right)\right|_0 ^2$ - $=2\left(16-\frac{2 \times 8}{3}\right)=32\left(1-\frac{1}{3}\right)=\frac{64}{3}$.
###
Definite Integral L-5
###
Problem-6
- Find out area between $y=(1-\cos x) \sin x$ - $x$-axis, $x=0$ and $x=\pi$. - $ y={(1-\cos x)}{\sin x}$ - $ x=0 \quad y=0$ - $ x=\pi \quad y=0$ - $ \sin x \geqslant 0 \quad[0, \pi]$ - $ 1-\cos x \geqslant 0 \quad[0, \pi]$ - $\int_0^\pi {[(1-\cos x) \sin x d x} $ - $ \int_0^\pi(\sin x-\sin x \cos x) d x=\int_0^\pi\left(\sin x-\frac{1}{2} \sin 2 x\right) d x$ - $ =-\cos x+\left.\frac{\cos 2 x}{4}\right|_0 ^\pi$ - $=-(-1-1)+\frac{1}{4}(1-1)=2$
###
Definite Integral L-5
###
Problem-7
- Area bounded between $y=\cos ^2 x$ and - $y=1, x=0$ and $x=\pi$ - solution: - $ A =\int_0^\pi\left[1-\cos ^2 x\right] d x$ - $ =\int_0^\pi \sin ^2 x d x$ - $=\int_0^\pi \frac{1-\cos 2 x}{2} d x$ - $A = \frac{x}{2}-\frac{sin2x}{4}|_0 ^ \pi$ - =$\frac{\pi}{2} - (0-0)=\frac{\pi}{2}$ - $\int_a^b f(x) d x$
###
Definite Integral L-5
###
Remark
- $f(x)$ is continuous on $[a, b]$ - $a, b$ are finite - 1) What if $f(x)$ is discontinuous on $[a, b]$ - 2) What if interval of integration is not bounded, i.e, $[a, \infty),(-\infty, a]$ OR $(-\infty, \infty)$.
###
Definite Integral L-5
###
Example
- $f(x)$ is discontinuous on $[a, b]$ but $f(x)$ is piecewise continuous. - $ \int_{-2}^2[x] d x$ - $ = \int_{-2}^{-1}(-2) d x+\int_{-1}^0 (-1) d x$ + $\int_0^1 0 d x+\int_1^2 1 d x$ - =$(-2)(x)|_ {-2} ^ {-1} $ + (-1) $x|_ {-1} ^ 0$ +0+ $x|_{1}^2$ - $ =(-2)(-1+2)+(-1)(0-(-1))+2-1$ - $=-2-1+1=-2$
###
Definite Integral L-5
###
Example
- Let $f(x)$ be continuous but interval of integration is not bounded:- - 1) $\int_0^{\infty}\left(\frac{1}{1+x^2}\right) d x$ - 2) $\int_{-\infty}^{\infty} \frac{1}{1+x^2} d x$
###
Definite Integral L-5
###
Example
- Function is discontinous but interval is finite $(say [a, b])$. - (discontinous - Infinite Values Some in the interval of $\Rightarrow$ integration). - Functions which are not continuous - also interval of integration is infinite. - For. $\int_{-\infty}^{\infty} \frac{1}{x^2} d x \quad \frac{1}{x^2}$ is not continuous at $x=0$ - and interval of integration is also unbounded.
###
Definite Integral L-5
###
Problem-9
- $ I =\int_0^{\infty} \frac{1}{1+x^2} d x$ - solution: - $ =\lim _{a \rightarrow \infty} \int_0^a \frac{1}{1+x^2} d x$ - $ =\left.\lim _{a \rightarrow \infty} \tan ^{-1} x\right|_0 ^a$ - $ =\lim _{a \rightarrow \infty}\left[\tan ^{-1} a-\tan ^{-1} 0\right]$ - $ =\tan ^{-1} \infty=\pi / 2 .$
###
Definite Integral L-5
###
Problem-10
- $ \int_0^{ 1} \frac{d x}{\sqrt{x}}$ - $ =\lim _{t \rightarrow 0} \int_t^ {1} \frac{d x}{\sqrt{x}}$ - $ = \left.\lim _{t \rightarrow 0} \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\right|_t ^1$ - $ = \lim _{t \rightarrow 0}[2-2 \sqrt{t}]=2$
###
Definite Integral L-5
###
Thank you