- Find out area of region which is out side parabola $y^2=4 x$ and inside the circle $x^2+y^2 \equiv 8 x,(x-4)^2+y^2 \equiv 16$ $x^2+4 x=8 x$ $x^2=4 x$ $x^2=4 x$ $x(x-4)=0$ $x=0, x=4$
- Solution:Required Area is symmetrical about $x$-axis. Required area $=2 A$ axis,
- $ \int_{x=0}^{x=4} \frac{\left(\sqrt{16-(x-4)^2}-\sqrt{4 x}\right) d x}{x-4=t}$
- $y=\sqrt{16-(x-4)^2} $