Find out smaller area bounded. between ellipse a2x2+b2y2=1 x=ae, where a>b.
Required Area
=2×A
=2∫x=aeaydx
y=±b(1−a2x2)
y=b1−a2x2=aba2−x2
=2∫aeaaba2−x2dx =a2b∫aeaa2−x2dx
=a2b[21xa2−x2+21a2sin−1ax]aea
=a2b[0+21a2sin−11−21aea2−a2e2−21a2sin−1e]
=a2b[4πa2−21aeb−21a2sin−1c]
Case 2f(x)⩾g(x),x∈[0,c]
g(x)⩾f(x),x∈[c,b]
Required Area
∫ac[f(x)−g(x)]dx + ∫cb[g(x)−f(x)]dx
∫x=0x=21(2x−4x2)dx
=23/2x3/202143x301/2
=3222121−34×81
=31−61=61
y2=2x,y=4x2 16x4=2xx=0 x(8x3−x)=0x=21
Find out area of region which is out side parabola y2=4x and inside the circle x2+y2≡8x,(x−4)2+y2≡16 x2+4x=8x x2=4x x2=4x x(x−4)=0 x=0,x=4
Solution:Required Area is symmetrical about x-axis. Required area =2A axis,
∫x=0x=4x−4=t(16−(x−4)2−4x)dx
y=16−(x−4)2
y=±4x =∫−4016−t2dt−2∫04xdx
x=0xy=±4x=∫−4016−t2dt−2∫04xdx
=[21t16−t2+2116sin−14t]−40
−23/2x3/2]04
=0+0−0−8sin−1(−1)−34×(4)3/2+0
=4π−34×8=4π−332. Req in area =8π−64/8.
Area bounded between circle x2+y2=4 and (x−2)2+y2=4.
Solution:
Elementary Area
=[4−y2−(2−4−y2)]dy
=[24−y2−2]dy
x−2=±4−y2
x=2±4−y2
x=2±4−y2x2+y2=4
x=±4−y2
∫y=−(24−y2−2)dy
(x−2)2+x−x2=4x2−4x+4−x2=0x=1y=±3
∫y=−3(314−y2−2)dy
c(x−2)2+x2−x2=4x2−4x+4−x2=0x=1y=±3=2
∫03(24−y2−2)dy=4
∫03(24−y2−1)dy.
=4[21y4−y2+214sin−12y−y]03
=4∫03(4−y22−1)dy.
=4[21y4−y2+214sin−12y−y]03
=4[213+2sin−123−3]
=4[23π−213] =38π−23
Ex. Area bounded between x-axis, sinx and x=−2π is x=23π
Required Area.
Required Area
A1=∫−π/20sinxdx=−cosx∣−π/20=−1
A2=∫0πsinxdx=−cosx∣0π=1−(−1)=2
A3=∫π3π/2sinxdx=−cosx∣π3π/2=−1
Required Area.
=∣A1∣+A2+∣A3∣
A1=∫−π/20sinxdx=−cosx∣−π/20=−1
A2=∫0π/2sinxdx=−cosx∣0π=1−(−1)=2
A3=∫π3π/2sinxdx=−cosx∣π3π/2=−
Ex. Find out area bounded by ∣x∣+∣y∣=1.
∫01(1−x−(x−1))dx
+∫−10(1+x−(−x−2))dx=1,x−y=1,−x−y=1.
.=∫012(1−x)dx+∫−102(1+x)
dx=2−2(1−x)20
1+2(1+x)2]10
=−2×(−21)+2×21=1+1=2
Example. Find out area bounded between this Curves.
y2=4ax
y=mx.
a>0,m>0.