Definite Integral L-3
Definite integral lecture-3
→ \rightarrow →
→ \rightarrow → Definite integral lecture-3 → \rightarrow → Example-1 → \rightarrow → Example-2
Definite Integral L-3
Example-1
I= ∫ − 2 2 x 3 sin 4 x cos 2 x f ( x ) d x \int_{-2}^2 \frac{x^3 \sin ^4 x \cos ^2 x}{f(x)} d x ∫ − 2 2 f ( x ) x 3 s i n 4 x c o s 2 x d x
∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x for even function \int_{-a}^a f(x) d x=2 \int_0^a f(x) d x \text { for even function } ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x for even function
= 0 for odd function =0 \text { for odd function } = 0 for odd function
f ( − x ) = ( − x ) 3 sin 4 ( − x ) cos 2 ( − x ) f(-x)=(-x)^3 \sin ^4(-x) \cos ^2(-x) f ( − x ) = ( − x ) 3 sin 4 ( − x ) cos 2 ( − x )
= − x 3 sin 4 x cos 2 x =-x^3 \sin ^4 x \cos ^2 x = − x 3 sin 4 x cos 2 x
= − f ( x ) Integrand is odd. =-f(x) \text { Integrand is odd. } = − f ( x ) Integrand is odd.
hence I = 0 . \text { hence } I=0 \text {. } hence I = 0 .
→ \rightarrow → Definite integral lecture-3 → \rightarrow → Example-1 → \rightarrow → Example-2 → \rightarrow → Example-3
Definite Integral L-3
Example-2
I = ∫ 0 1 x x + 1 − x d x ⋅ − ( 1 ) ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x I=\int_0^1 \frac{\sqrt{x}}{\sqrt{x}+\sqrt{1-x}} d x \cdot-(1) \int_0^a f(x) d x=\int_0^a f(a-x) d x I = ∫ 0 1 x + 1 − x x d x ⋅ − ( 1 ) ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x
I = ∫ 0 1 1 − x ) 1 − x + 1 − ( 1 − x ) d x = ∫ 0 1 1 − x 1 − x + x d x I=\int_0^1 \frac{\sqrt{1-x)}}{\sqrt{1-x}+\sqrt{1-(1-x)}} d x=\int_0^1 \frac{\sqrt{1-x}}{\sqrt{1-x}+\sqrt{x}} d x I = ∫ 0 1 1 − x + 1 − ( 1 − x ) 1 − x ) d x = ∫ 0 1 1 − x + x 1 − x d x
(1) +(2)
2 I = ∫ 0 1 x + 1 − x 1 − x + x d x 2 I=\int_0^1 \frac{\sqrt{x}+\sqrt{1-x}}{\sqrt{1-x}+\sqrt{x}} d x 2 I = ∫ 0 1 1 − x + x x + 1 − x d x
= ∫ 0 1 d x = 1 =\int_0^1 d x=1 = ∫ 0 1 d x = 1
I = 1 2 I=\frac{1}{2} I = 2 1
Definite integral lecture-3 → \rightarrow → Example-1 → \rightarrow → Example-2 → \rightarrow → Example-3 → \rightarrow → Example-3
Definite Integral L-3
Example-3
I = ∫ − π / 2 π / 2 sin 2 x d x . sin 2 x = 1 − cos 2 x 2 I=\int_{-\pi / 2}^{\pi / 2} \sin ^2 x d x . \quad \sin ^2 x=\frac{1-\cos 2 x}{2} I = ∫ − π /2 π /2 sin 2 x d x . sin 2 x = 2 1 − c o s 2 x
I = 2 ∫ 0 π / 2 sin 2 x d x I=2 \int_0^{\pi / 2} \sin ^2 x d x I = 2 ∫ 0 π /2 sin 2 x d x
sin 2 ( − x ) = sin 2 x \sin ^2(-x)=\sin ^2 x sin 2 ( − x ) = sin 2 x
(1)
∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x \int_0^a f(x) d x=\int_0^a f(a-x) d x ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x
Example-1 → \rightarrow → Example-2 → \rightarrow → Example-3 → \rightarrow → Example-3 → \rightarrow → Example-4
Definite Integral L-3
Example-3
=2 ∫ 0 π / 2 sin 2 ( π 2 − x ) d x \int_0^{\pi / 2} \sin ^2\left(\frac{\pi}{2}-x\right) d x ∫ 0 π /2 sin 2 ( 2 π − x ) d x
I = 2 ∫ 0 π / 2 cos 2 x d x − ( 2 ) I =2 \int_0^{\pi / 2} \cos ^2 x d x-(2) I = 2 ∫ 0 π /2 cos 2 x d x − ( 2 )
(1) + (2)
2 I = 2 ∫ 0 π / 2 ( sin 2 x + cos 2 x ) d x = 2 x π 2 I=2 \int_0^{\pi / 2}\left(\sin ^2 x+\cos ^2 x\right) d x=2 x \pi 2 I = 2 ∫ 0 π /2 ( sin 2 x + cos 2 x ) d x = 2 x π
2 I = π 2 I=\pi 2 I = π
I = π 2 I =\frac{\pi}{2} I = 2 π
Example-2 → \rightarrow → Example-3 → \rightarrow → Example-3 → \rightarrow → Example-4 → \rightarrow → Example-4
Definite Integral L-3
Example-4
Ex
I = ∫ 0 π / 2 log ( 4 + 3 sin x 4 + 3 cos x ) d x I = \int_0^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x I = ∫ 0 π /2 log ( 4 + 3 c o s x 4 + 3 s i n x ) d x (1)
I = ∫ 0 π / 2 log ( 4 + 3 sin ( π 2 − x ) 4 + 3 cos ( π 2 − x ) ) d x =\int_0^{\pi / 2} \log \left(\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right) d x = ∫ 0 π /2 log ( 4 + 3 c o s ( 2 π − x ) 4 + 3 s i n ( 2 π − x ) ) d x
x = ∫ 0 π f ( x − a ) d x x=\int_0^\pi f(x-a) d x x = ∫ 0 π f ( x − a ) d x
Example-3 → \rightarrow → Example-3 → \rightarrow → Example-4 → \rightarrow → Example-4 → \rightarrow → Example-5
Definite Integral L-3
Example-4
I = ∫ 0 π / 2 log ( 4 + 3 cos x 4 + 3 sin x ) d x I =\int_0^{\pi / 2} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x I = ∫ 0 π /2 log ( 4 + 3 s i n x 4 + 3 c o s x ) d x (2)
2 I = ∫ 0 π / 2 [ log ( 4 + 3 sin x 4 + 3 cos x ) + log ( 4 + 3 cos x 4 + 3 sin x ) ] d x 2 I =\int_0^{\pi / 2}\left[\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\log \left(\frac{4+3 \cos x}{4+3 \sin x}\right)\right] d x 2 I = ∫ 0 π /2 [ log ( 4 + 3 c o s x 4 + 3 s i n x ) + log ( 4 + 3 s i n x 4 + 3 c o s x ) ] d x
= ∫ 0 π / 2 log ( 4 + 3 sin x 4 + cos x × 4 x sen x 4 + sin x ) d x =\int_0^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+\cos x} \times \frac{4 x \operatorname{sen} x}{4+\sin x}\right) d x = ∫ 0 π /2 log ( 4 + c o s x 4 + 3 s i n x × 4 + s i n x 4 x sen x ) d x
2 I = ∫ 0 π / 2 log 1 d x ⇒ 2 I = 0 I = 0 \begin{aligned} & 2 I=\int_0^{\pi / 2} \log 1 d x \ & \Rightarrow 2 I=0 \\ & I=0\end{aligned} 2 I = ∫ 0 π /2 log 1 d x I = 0 ⇒ 2 I = 0
Example-3 → \rightarrow → Example-4 → \rightarrow → Example-4 → \rightarrow → Example-5 → \rightarrow → Application of definite integrals as area under simple curves
Definite Integral L-3
Example-5
∫ 0 1 x I e x I I d x . \int_0^1 \frac{x}{I} \frac{e^x}{II} d x . ∫ 0 1 I x II e x d x .
= x ⋅ e x ∣ x = 0 x = 1 − ∫ 0 1 1 ⋅ e x d x \left.x \cdot e^x\right|_{x=0} ^{x=1}-\int_0^1 1 \cdot e^x d x x ⋅ e x ∣ x = 0 x = 1 − ∫ 0 1 1 ⋅ e x d x
= 1 e 1 − 0 e 0 − e x ∣ 0 1 1 e^1-0 e^0-\left.e^x\right|_0 ^1 1 e 1 − 0 e 0 − e x ∣ 0 1
= e − 0 − ( e − e 0 ) e-0-\left(e-e^0\right) e − 0 − ( e − e 0 )
= e − e + 1 = 1. e-e+1=1 . e − e + 1 = 1.
Example-4 → \rightarrow → Example-4 → \rightarrow → Example-5 → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves
Definite Integral L-3
Application of definite integrals as area under simple curves
Example-4 → \rightarrow → Example-5 → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves
Definite Integral L-3
Application of definite integrals as area under simple curves
Example-5 → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves
Definite Integral L-3
Application of definite integrals as area under simple curves
Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Example-6
Definite Integral L-3
Application of definite integrals as area under simple curves
Case 4
A 1 = ∫ a c f ( x ) d x > 0 A_1=\int_a^c f(x) d x>0 A 1 = ∫ a c f ( x ) d x > 0
A 2 = ∫ c b f ( x ) d x < 0 A_2 =\int_c^b f(x) d x<0 A 2 = ∫ c b f ( x ) d x < 0
A = A 1 + ∣ A 2 ∣ =A_1+\left|A_2\right| = A 1 + ∣ A 2 ∣
Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Example-6 → \rightarrow → Example-6
Definite Integral L-3
Example-6
Area of circle
x 2 + y 2 = a 2 x^2+y^2=a^2 x 2 + y 2 = a 2
Total Area 4A
= 4 ∫ x = 0 x = a y d x = 4 ∫ 0 a a 2 − x 2 d x =4 \int_{x=0}^{x=a} y d x=4 \int_0^a \sqrt{a^2-x^2} d x = 4 ∫ x = 0 x = a y d x = 4 ∫ 0 a a 2 − x 2 d x
x 2 + y 2 = a 2 x^2+y^2=a^2 x 2 + y 2 = a 2
y = ± a 2 − x 2 ‾ y= \pm \sqrt{a^2}-\overline{x^2} y = ± a 2 − x 2
= 4 [ 1 2 x a 2 − x 2 + 1 2 a 2 sin − 1 x a ] x = 0 x = a =4\left[\frac{1}{2} x \sqrt{a^2-x^2}+\frac{1}{2} a^2 \sin ^{-1} \frac{x}{a}\right]_{x=0}^{x=a} = 4 [ 2 1 x a 2 − x 2 + 2 1 a 2 sin − 1 a x ] x = 0 x = a
= 4 [ 1 2 a 2 π 2 − 0 − 0 ] = π a 2 . =4\left[\frac{1}{2} a^2 \frac{\pi}{2}-0-0\right]=\pi a^2 \text {. } = 4 [ 2 1 a 2 2 π − 0 − 0 ] = π a 2 .
Application of definite integrals as area under simple curves → \rightarrow → Application of definite integrals as area under simple curves → \rightarrow → Example-6 → \rightarrow → Example-6 → \rightarrow → Example-6
Definite Integral L-3
Example-6
Area of circle
=4 ∫ y = 0 a x d y \int_{y=0}^a x d y ∫ y = 0 a x d y
=4 ∫ 0 a a 2 − y 2 d y \int_0^a \sqrt{a^2-y^2} d y ∫ 0 a a 2 − y 2 d y
x 2 + y 2 = a 2 x^2+y^2=a^2 x 2 + y 2 = a 2
x = ± a 2 − y 2 = \pm \sqrt{a^2-y^2} = ± a 2 − y 2
x = a 2 − y 2 =\sqrt{a^2-y^2} = a 2 − y 2
Application of definite integrals as area under simple curves → \rightarrow → Example-6 → \rightarrow → Example-6 → \rightarrow → Example-6 → \rightarrow → Example-7
Definite Integral L-3
Example-6
= 4 [ 1 2 y a 2 − y 2 + 1 2 a 2 sin − 1 y a ] y = 0 a =4\left[\frac{1}{2} y \sqrt{a^2-y^2}
+\frac{1}{2} a^2 \sin ^{-1} \frac{y}{a}\right]_{y=0}^a = 4 [ 2 1 y a 2 − y 2 + 2 1 a 2 sin − 1 a y ] y = 0 a
= 4 [ 1 2 a 2 π 2 − 0 − 0 ] = π a 2 =4\left[\frac{1}{2} a^2 \frac{\pi}{2}-0-0\right]=\pi a^2 = 4 [ 2 1 a 2 2 π − 0 − 0 ] = π a 2
Example-6 → \rightarrow → Example-6 → \rightarrow → Example-6 → \rightarrow → Example-7 → \rightarrow → Example-7
Definite Integral L-3
Example-7
Ex. Area of Ellipse.
Total Area
= 4 A = 4 ∫ x = 0 x = a y d x =4 A \quad =4 \int_{x=0}^{x=a} y d x = 4 A = 4 ∫ x = 0 x = a y d x
= 4 ∫ 0 a b a a 2 − x 2 d x =4 \int_0^a \frac{b}{a} \sqrt{a^2-x^2} d x = 4 ∫ 0 a a b a 2 − x 2 d x
x 2 a 2 + y 2 b 2 = 1 a > b \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad a>b a 2 x 2 + b 2 y 2 = 1 a > b
y= ± b 1 − x 2 a 2 \pm b \sqrt{1-\frac{x^2}{a^2}} ± b 1 − a 2 x 2
y= ± b a a 2 − x 2 \pm \frac{b}{a} \sqrt{a^2-x^2} ± a b a 2 − x 2
Example-6 → \rightarrow → Example-6 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7
Definite Integral L-3
Example-7
= 4 b a ∫ 0 a a 2 − x 2 d x =\frac{4 b}{a} \int_0^a \sqrt{a^2-x^2} d x = a 4 b ∫ 0 a a 2 − x 2 d x
= 4 b a [ 1 2 x a 2 − x 2 + 1 2 a 2 sin − 1 x a ] =\frac{4 b}{a}\left[\frac{1}{2} x \sqrt{a^2-x^2}+\frac{1}{2} a^2 \sin^{-1} \frac{x}{a} \right] = a 4 b [ 2 1 x a 2 − x 2 + 2 1 a 2 sin − 1 a x ]
Example-6 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7
Definite Integral L-3
Example-7
Total Area = 4 b a [ 1 2 x a 2 − x 2 + 1 2 a 2 sin − 1 x a ] x = 0 a \frac{4 b}{a}\left[\frac{1}{2} x \sqrt{a^2-x^2}+\frac{1}{2} a^2 \sin ^{-1} \frac{x}{a}\right]_{x=0}^a a 4 b [ 2 1 x a 2 − x 2 + 2 1 a 2 sin − 1 a x ] x = 0 a
= 4 b a × [ 1 2 a 2 π 2 − 0 − 0 ] =\frac{4 b}{a} \times\left[\frac{1}{2} a^2 \frac{\pi}{2}-0-0\right] = a 4 b × [ 2 1 a 2 2 π − 0 − 0 ]
= 4 b a × a 2 π 4 =\frac{4 b}{a} \times \frac{a^2 \pi}{4} = a 4 b × 4 a 2 π
= π a b =\pi a b = πab
Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7
Definite Integral L-3
Example-7
Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-8
Definite Integral L-3
Example-7
= 4 ∫ 0 b a b b 2 − y 2 d y =4 \int_0^b \frac{a}{b} \sqrt{b^2-y^2} d y = 4 ∫ 0 b b a b 2 − y 2 d y
x 2 a 2 = 1 − y 2 b 2 \frac{x^2}{a^2}=1-\frac{y^2}{b^2} a 2 x 2 = 1 − b 2 y 2
x a = ± 1 − b 2 b 2 \frac{x}{a}= \pm \sqrt{1-\frac{b^2}{b^2}} a x = ± 1 − b 2 b 2
= 4 a b [ 1 2 y b 2 − y 2 + 1 2 b 2 sin − 1 y b ] 0 b =\frac{4 a}{b}\left[\frac{1}{2} y \sqrt{b^2-y^2}+\frac{1}{2} b^2 \sin ^{-1} \frac{y}{b}\right]_0^b = b 4 a [ 2 1 y b 2 − y 2 + 2 1 b 2 sin − 1 b y ] 0 b
= 4 a b̸ [ 0 + 1 2 b 2 π 2 − 0 − 0 ] = π a b , =\frac{4 a}{\not b}\left[0+\frac{1}{2} b^2 \frac{\pi}{2}-0-0\right]=\pi a b, = b 4 a [ 0 + 2 1 b 2 2 π − 0 − 0 ] = πab ,
Example-7 → \rightarrow → Example-7 → \rightarrow → Example-7 → \rightarrow → Example-8 → \rightarrow → Example-8
Definite Integral L-3
Example-8
Example-7 → \rightarrow → Example-7 → \rightarrow → Example-8 → \rightarrow → Example-8 → \rightarrow → Example-8
Definite Integral L-3
Example-8
Example-7 → \rightarrow → Example-8 → \rightarrow → Example-8 → \rightarrow → Example-8 → \rightarrow → Example-9
Definite Integral L-3
Example-8
By using vertical stop (elementary rectangles)
Required Area
= ∫ x = − 1 1 y d x − ∫ y = 1 1 y d x =\int_{x=-1}^1 y d x-\int_{y=1}^1 y d x = ∫ x = − 1 1 y d x − ∫ y = 1 1 y d x
y = x 2 y=x^2 y = x 2
y = 1 , y = x 2 , x = ± 1 y=1, y=x^2 , x= \pm 1 y = 1 , y = x 2 , x = ± 1
Example-8 → \rightarrow → Example-8 → \rightarrow → Example-8 → \rightarrow → Example-8 → \rightarrow → Example-9
Definite Integral L-3
Example-8
Example-8 → \rightarrow → Example-8 → \rightarrow → Example-8 → \rightarrow → Example-9 → \rightarrow → Example-9
Definite Integral L-3
Example-9
Ex. Area bounded between y = x , y 2 = 2 − x y=x, y^2=2-x y = x , y 2 = 2 − x and y = 0 y=0 y = 0 which is in first quadrant.
x 2 = 2 − x x^2=2-x x 2 = 2 − x
x 2 + x − 2 = 0 x^2+x-2=0 x 2 + x − 2 = 0
x = − 1 ± 1 + 0 2 = − 1 ± 3 2 x=\frac{-1 \pm \sqrt{1+0}}{2}=\frac{-1 \pm 3}{2} x = 2 − 1 ± 1 + 0 = 2 − 1 ± 3
Example-8 → \rightarrow → Example-8 → \rightarrow → Example-9 → \rightarrow → Example-9 → \rightarrow → Example-9
Definite Integral L-3
Example-9
Example-8 → \rightarrow → Example-9 → \rightarrow → Example-9 → \rightarrow → Example-9 → \rightarrow → Thank you
Definite Integral L-3
Example-9
A = A 1 + A 2 =A_1+A_2 = A 1 + A 2
= ∫ 0 1 x d x + ∫ 1 2 2 − x d x \int_0^1 x d x+\int_1^2 \sqrt{2-x} d x ∫ 0 1 x d x + ∫ 1 2 2 − x d x
= 1 2 x 2 ∣ 0 1 + ( 2 − x ) 3 / 2 − 3 / 2 ∣ 1 2 =\left.\frac{1}{2} x^2\right|_0 ^1+\left.\frac{(2-x)^{3 / 2}}{-3 / 2}\right|_1 ^2 = 2 1 x 2 0 1 + − 3/2 ( 2 − x ) 3/2 1 2
= 1 2 − 0 + 0 − ( − 2 3 ) =\frac{1}{2}-0+0-\left(-\frac{2}{3}\right) = 2 1 − 0 + 0 − ( − 3 2 )
= 1 2 + 2 3 = 7 6 \frac{1}{2}+\frac{2}{3}=\frac{7}{6} 2 1 + 3 2 = 6 7
Example-8 → \rightarrow → Example-9 → \rightarrow → Example-9 → \rightarrow → Thank you → \rightarrow →
Definite Integral L-3
Thank you
Example-9 → \rightarrow → Example-9 → \rightarrow → Thank you → \rightarrow →
→ \rightarrow →
Resume presentation
Definite Integral L-3 Definite integral lecture-3 $\rightarrow$
$\rightarrow$ Definite integral lecture-3 $\rightarrow$ Example-1 $\rightarrow$ Example-2