∫abf(x)dx=F(b)−F(a)
F′(x)=f(x)
Remark:- (F(x)+c)′=f(x)
∫abf(x)dx=F(x)+c∣ab
=F(b)+c−(F(a)+c)
=F(b)−F(a)
Ex.∫011+x21dx
=tan−1xx=0x=1
=(tan−11)−(tan−10)
[dxd(tan−1x)=1+x21]
4π−0=4π
∫abf(x)dx=F(b)−F(a)
F′(x)=f(x)
It is not easy to compute anti derivative of f(x). always.
Then what to do?
Ex:
I=∫0π/42tanx(sec2xdx).
tanx=t
sec2xdx=dt
x=0,tan0=0=1x=4π,tan4π=1=t
I=∫t=012tdt
=22t201
=1−0=1
I=∫abf(g(x))g′(x)dx
g(x)=u
[x=a,u=g(a) and x=b,u=g(b)]
g′(x)dx=du
I=∫g(a)g(b)f(u)du
f(x)=F′(x)
Ex:
I=∫14(1+x3/2)23xdx
1+x3/21=u
[x=1,u=21x=4,u=1+81=91]
(1+x1/2)2−123x1/2dx=du
[(1+x3/2)23xdx=−2du]
I=∫1/21/9−2du=−2u∣1/21/9
=−2[91−21]
=−52+1=7/9
Ex:
∫02x4+9x3dx
(x4+9)=t
21((x4+9)−1/24x3dx=dt
x4+9x3dx=2dt
x=0t=9=3
x=2t=25=5
=∫352dt=21(5−3)=1
Problem.
I=∫−1−1/24t−2sin2(1+tt)dt
1+t1=u;−t−2dt=du,t−2dt=−du
t=−1,u=0;t=−21,u=−1
I=−∫0−14sin2udu=−4∫0−121−cos2udu
=−2∫0−1(1−cos2u)du=−2[u−2sin2u]0−1
=−2[−1−0−2sin(−2)+0]=2−sin2
Property 1:-
∫abf(x)dx=∫abf(t)dt
x=tdx=dt
x=a→t=a
x=b→t=b
Property 2:
∫abf(x)dx=−∫baf(x)dx
in particular ∫aaf(x)dx=0
∫abf(x)dx=F(b)−F(a)=−[F(a)−F(b)]
=−∫baf(x)dx
Property 3:-
a < c < b
∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
F′(x)=f(x)
∫abf(x)dx=F(b)−F(a)=F(b)−F(c)+F(c)−F(b)
∫acf(x)dx=F(c)−F(a)
∫cbf(x)dx=F(b)−F(c)
=∫cbf(x)dx+∫acf(x)dx
Property 4.
∫abf(x)dx=∫abf(a+b−x)dx
∫abf(x)dxx=a+b−t,dx=−dt
[x=a,t=bx=b,t=a]
=∫t=bt=af(a+b−t)(−dt)
=∫abf(a+b−t)dt=∫abf(a+b−x)dx
Property 5.
∫0af(x)dx=∫0af(a−x)dx
∫0af(x)dxx=a−tx=0,t=a
[dx=−dtx=a,t=0]
=∫t=at=0f(a−t)−dt=∫0af(a−t)dt
=∫0af(a−x)dx
Property 6.
∫02af(x)dx=∫0af(x)dx+∫a2af(x)dx→(Property3)
∫02af(x)dxx=2a−t,dx=−dt
=∫00f(2a−t)(−dt)
x=a,→t=a
x=2a→t=0
=∫0af(2a−k)dt=∫0af(2a−x)dx
∫02af(x)dx=∫0af(x)dx+∫a2af(x)dx
∫02af(x)dx=∫0af(x)dx+∫0af(2a−x)dx
Property 7.
∫02af(x)dx=∫0af(x)dx+∫0af(2a−2)dx→1
If f(2a−x)=f(x) then
∫02af(x)dx=2∫0af(x)dx]
if f(2a−x)=−f(x)
∫02af(x)dx=0)
Property 8.
∫−aaf(x)dx={2∫0af(x)dx iff(a) is even
∫−aaf(x)dx=0 if f(x) is odd
even function f(−x)=f(x)
odd function f(−x)=−f(x).
∫−a0f(x)dx=∫a0f(−t)(−dt)x=−t,dx=−dt
=∫0af(−t)dtx=−a,t=a,x=0,t=0
∫−aaf(x)dx=∫0af(−t)dt+∫0af(t)dt
∫−aaf(x)dx=∫0af(−x)dx+∫0af(x)dx
If f(x) is even, i.e., f(−x)=f(x)
∫−aaf(x)dx=2∫−aaf(x)dx
If f(−x)=−f(x)
∫−aaf(x)dx=0
∫−aaf(x)dx=∫0af(−x)dx+∫0af(x)dx
If f(x) is even, i.e., f(−x)=f(x)
∫−aaf(x)dx=2∫−aaf(x)dx
If f(−x)=−f(x)
∫−aaf(x)dx=0
=∫02−(x−2)dx+∫04(x−2)dx
=−2x2+2x∣02+2x2−2x∣24
=−24+4−0+216−8−24+4
= -2 + 4 - 0 + 8 - 8 - 2 + 4 = 4
I=∫0π/2sinx+cosx4sinxdx∫0af(x)dx
I=∫0π/2sin(2π−x)+cos(2π−x)4sin(2π−x)dx=∫0af(a−x)dx
I=∫0π/2cosx+sinx4cosxdx
(1) +(2)
2I=∫0π/24dx=4×2π
I=π
I=2∫0π/2logcosxdx⋅−(1)∫0πf(x)dx
I=2∫0π/2f(logcos(2π−x))dx
I=2∫0π/2logsinxdx−2
(1) + (2)
2I=2∫0π/2(logsinx+logcosx)dx
I=∫0π/2log(22sinxcosx)dx
I=∫0π/2log1sin2xdx−∫0π/2log2dx
2 x=k
I=∫0πlogsint(21dt)−2πlog2
=21∫0πlogsintdt−2πlog2
∫02af(x)dx=2∫0af(x)dxf(2a−x)=f(x)
I=21×2∫0π/2logsin(π−t)dt−2πlog2
I=∫0π/2logsintdt−2πlog
I=∫01x(1−x)ndx.∫0af(x)dx
I=∫01(1−x)(1−(1−x))ndx=∫0af(a−x)dx
=∫01(1−x)xndx=∫01xn−xn+1dx
=n+1xn+1−n+2xn+201
=n+11−n+21=(n+1)(n+2)1
I=∫01x(1−x)ndx.∫0af(x)dx
I=∫01(1−x)(1−(1−x))ndx=∫0af(a−x)dx
=∫01(1−x)xndx=∫01xn−xn+1dx
=n+1xn+1−n+2xn+201
=n+11−n+21=(n+1)(n+2)1
I=∫0π1+sinxxdx=∫0π1+sin(π−x)π−xdx
[∫0af(x)dx]=[∫0af(a−x)dx]
=∫0π1+sinx(π−x)dx,2I=∫0π1+sinxπdx
2I=π∫0π(sin2x+cos2x)2dx=π∫0π(1+tan2x)2sec22xdx
Let tan2x=t21sec22xdx=dt2I=2π
2I=π∫0∞(1+t)22dt=π1+t(−2)0∞=−2π(0−1)