###
Definite Integral L-2
###
Definite integral lecture-2
###
Definite Integral L-2
###
Method of anti derivatives
- $ \int_a^b f(x) d x=F(b)-F(a) $ - $ F^{\prime}(x)=f(x) $ - Remark:- $ \quad(F(x)+c)^{\prime}=f(x) $ - $ \int_a^b f(x) d x =F(x)+\left.c\right|_a ^b $ - $ =F(b)+c-(F(a)+c) $ - $ =F(b)-F(a) $
###
Definite Integral L-2
###
Problem-1
- $\underline{{\text{Ex.}}} \quad \int_0^1 \frac{1}{1+x^2} d x $ - $ =\left.\tan ^{-1} x\right|_{x=0} ^{x=1} $ - $ =\left.(\tan ^{-1} 1\right)-(\tan ^{-1} 0) $ - $ [ \quad \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^2} ] $ - $ \frac{\pi}{4}-0=\frac{\pi}{4} $
###
Definite Integral L-2
###
Definite integral
- $ \int_a^b f(x) d x=F(b)-F(a) $ - $ F^{\prime}(x)=f(x) $ - It is not easy to compute anti derivative of $f(x)$. always. - Then what to do?
###
Definite Integral L-2
###
Problem-2
- $\underline{{\text{Ex:}}}$ - $ I=\int_0^{\pi / 4} {2 \tan x\left\(\sec ^2 x d x) .\right.} $ - $ {\tan x=t} $ - $ \sec ^2 x d x=d t $ - $x=0, tan0=0=1 \\\\ x=\frac{\pi}{4}, \tan \frac{\pi}{4}=1=t $ - $ I=\int_{t=0}^1 2 t d t $ - $ =\left.2 \frac{t^2}{2}\right|_0 ^1 $ - $ =1-0=1 $
###
Definite Integral L-2
###
Method of substitution
- $ I =\int_a^b f(g(x)) \quad {g^{\prime}(x) d x} $ - $ \quad g(x)=u $ - $ \biggl[{x=a, u=g(a)} \ \text{and} \ x=b, u=g(b)\biggl] $ - $ g^{\prime}(x) d x=d u $ - $ I =\int_{g(a)}^{g(b)} f(u)du $ - $ \quad \boxed{f(x)=F^{\prime}(x)}$
###
Definite Integral L-2
###
Problem-3
- $\underline{{\text{Ex:}}}$ - $ I=\int_1^4 \frac{3 \sqrt{x}}{\left(1+x^{3 / 2}\right)^2} d x $ - $ \frac{1}{1+x^{3 / 2}}=u $ - $ \biggl[ x=1, \quad u=\frac{1}{2} \\\\ \quad x=4, u=\frac{1}{1+8}=\frac{1}{9} \biggl] $
###
Definite Integral L-2
###
solution
- $ \frac{-1 \frac{3}{2} x^{1 / 2}}{\left(1+x^{1 / 2}\right)^2} d x=d u $ - $ [ \quad \frac{3 \sqrt{x} d x}{\left(1+x^{3 / 2}\right)^2}=-2 d u ]$ - $ I=\int_{1 / 2}^{1 / 9}-2 d u=-\left.2 u\right|_{1 / 2} ^{1 / 9} $ - $ =-2\left[\frac{1}{9}-\frac{1}{2}\right] $ - $ =-\frac{2}{5}+1=7 / 9 $
###
Definite Integral L-2
###
Problem-4
- $\underline{{\text{Ex:}}}$ - $ \int_0^2 \frac{x^3 d x}{\sqrt{x^4+9}}$ - $ \sqrt{\left(x^4+9\right)}=t $ - $ \frac{1}{2}(\left(x^4+9\right)^{-1 / 2} 4 x^3 d x=d t $ - $ \frac{ x^3 d x}{\sqrt{x^4+9}}=\frac{d t}{2} $ - $ x=0 \quad t=\sqrt{9}=3 $ - $ x=2 \quad t=\sqrt{25}=5 $ - $=\int_3^5 \frac{d t}{2}=\frac{1}{2}(5-3)=1 $
###
Definite Integral L-2
###
Problem-5
- $\underline{{\text{Problem.}}}$ - $ I=\int_{-1}^{-1 / 2} 4 t^{-2} \sin ^2\left(1+\frac{t}{t}\right) d t $ - $ 1+\frac{1}{t}=u ;-t^{-2} d t=d u, t^{-2} d t=-d u $ - $ \quad t=-1, u=0 ; \quad t=-\frac{1}{2}, u=-1 $
###
Definite Integral L-2
###
Solution
- $ I= -\int_0^{-1} 4 \sin ^2 u d u=-4 \int_0^{-1} \frac{1-\cos 2 u}{2} d u $ - $ = -2 \int_0^{-1}(1-\cos 2 u) d u=-2\left[u-\frac{\sin 2 u}{2}\right]_0^{-1} $ - $ =-2\left[-1-0-\frac{\sin (-2)}{2}+0\right]=2-\sin 2 $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 1:-}}$ - $\int_a^b f(x) d x=\int_a^b f(t) d t $ - $ x=t \quad d x=dt $ - $ x=a \rightarrow t=a $ - $ x=b \rightarrow t=b $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 2:}}$ - $ \int_a^b f(x) d x=-\int_b^a f(x) d x $ - in particular $ \int_a^a f(x) d x=0 $ - $ \int_a^b f(x) d x=F(b)-F(a)=-[F(a)-F(b)] $ - $ =-\int_b^a f(x)dx $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property \ 3:-}}$ - a < c < b - $ \int_a^b f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x $ - $ F^{\prime}(x)=f(x) $ - $ \int_a^b f(x) d x=F(b)-F(a)=F(b)-F(c)+F(c)-F(b) $
###
Definite Integral L-2
###
Properties of definite integrals
- $ \int_a^c f(x) d x=F(c)-F(a) $ - $ \int_c^b f(x) d x=F(b)-F(c) $ - $=\int_c^b f(x)dx + \int_a^c f(x) dx $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 4.}}$ - $ \int_a^b f(x) d x =\int_a^b f(a+b-x) d x $ - $ \int_a^b f(x) d x \quad x=a+b-t , dx = -dt $ - $ \biggl[ x = a , t = b \\\\ \quad x = b, t = a \biggl] $ - $ =\int_{t=b}^{t=a} f(a+b-t)(-d t) $ - $ =\int_a^b f(a+b-t) d t=\int_a^b f(a+b-x) d x $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 5.}}$ - $ \quad \int_0^a f(x) d x=\int_0^a f(a-x) d x $ - $ \int_0^a f(x) d x \quad x=a-t \quad x=0, t=a $ - $ [ \quad dx = -dt \quad x=a, t=0 ] $ - $ =\int_{t=a}^{t=0} f(a-t)-d t=\int_0^a f(a-t) d t $ - $ =\int_0^a f(a-x) d x $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 6.}}$ - $ \int_0^{2a} f(x) dx = \int_0^a f(x) dx+ \int_a^{2a} f(x) dx \rightarrow (Property 3) $ - $ \int_0^{2 a} f(x) d x \quad x=2 a-t ,d x=-d t $ - $ =\int_0^0 f(2 a-t) \(-dt) $ - $ x=a, \rightarrow t=a $ - $ x=2 a \rightarrow t=0 $ - $ =\int_0^a f(2 a-k) d t =\int_0^a f(2 a-x) d x $ - $ \int_0^{2 a} f(x) d x=\int_0^a f(x) d x+\int_a^{2 a} f(x) d x $ - $ \int_0^{2 a} f(x) d x=\int_0^a f(x) d x+\int_0^a f(2 a-x) d x $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 7.}}$ - $\int_0^{2 a} f(x) d x=\int_0^a f(x) d x+\int_0^a f(2 a-2) d x \rightarrow 1 $ - $ \text { If }f(2 a-x)=f(x) \text { then } $ - $ \left.\int_0^{2 a} f(x) d x=2 \int_0^a f(x) d x\right] $ - $ \text { if } f(2 a-x)=-f(x) $ - $ \left.\int_0^{2 a} f(x) d x=0\right) $
###
Definite Integral L-2
###
Properties of definite integrals
- $\underline{\text{Property 8.}}$ - $\int_{-a}^a f(x) d x=\left\\{\begin{array}{l}2 \int_0^a f(x) d x \\ if f(a) \text { is even }\end{array}\right.$ - $ \int_{-a}^a f(x) d x=0 $ if $f(x)$ is odd - even function $f(-x)=f(x)$ - odd function $f(-x)=-f(x)$.
###
Definite Integral L-2
###
Property 8 proof
- $ \int_{-a}^a f(x) d x =\int_{-a}^0 f(x) d x+\int_0^a f(x) d x $ - $ \int_{-a}^0 f(x) d x =\int_a^0 f(-t)(-d t) \quad x=-t , d x=-d t $ - $ =\int_0^a f(-t) d t \quad x=-a , t=a ,x=0 , t=0 $
###
Definite Integral L-2
###
Property 8 proof
- $ \int_{-a}^a f(x) d x =\int_0^a f(-t) d t+\int_0^a f(t) d t $ - $\int_{-a}^a f(x) d x=\int_0^a f(-x) d x+\int_0^a f(x) d x $ - If $ f(x)$ is even, i.e., $f(-x)=f(x) $ - $ \int_{-a}^a f(x) d x=2 \int_{-a}^a f(x) d x $ - $ \text { If } f(-x)=-f(x) $ - $ \int_{-a}^a f(x) d x=0 $
###
Definite Integral L-2
###
Property 8 proof
- $ \int_{-a}^a f(x) d x=\int_0^a f(-x) d x+\int_0^a f(x) d x $ - If $ f(x)$ is even, i.e., $f(-x)=f(x) $ - $ \int_{-a}^a f(x) d x=2 \int_{-a}^a f(x) d x $ - $ \text { If } f(-x)=-f(x) $ - $ \int_{-a}^a f(x) d x=0 $
###
Definite Integral L-2
###
Problem-6
- $ \int_0^4|x-2| d x $ ![alt text](https://imagedelivery.net/YfdZ0yYuJi8R0IouXWrMsA/334ffa64-3859-4acf-3923-76f1c0bfe400/public) - $ = \int_0^2-(x-2) d x+\int_0^4(x-2) d x $ - $ = -\frac{x^2}{2}+\left.2 x\right|_0 ^2+\frac{x^2}{2}-\left.2 x\right|_2 ^4 $ - $ = -\frac{4}{2}+4-0+\frac{16}{2}-8-\frac{4}{2}+4 $ - = -2 + 4 - 0 + 8 - 8 - 2 + 4 = 4
###
Definite Integral L-2
###
Problem-7
- $ I =\int_0^{\pi / 2} \frac{4 \sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \int_0^a f(x) d x $ - $ I =\int_0^{\pi / 2} \frac{4 \sqrt{\sin \left(\frac{\pi}{2}-x\right)} d x}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}}=\int_0^a f(a-x) d x $ - $ I =\int_0^{\pi / 2} \frac{4 \sqrt{\cos x} d x}{\sqrt{\cos x}+\sqrt{\sin x}} $ - $ \text { (1) }+(2) $ - $ 2 I =\int_0^{\pi / 2} 4 d x=4 \times \frac{\pi}{2} $ - $ I = {\pi} $
###
Definite Integral L-2
###
Problem-8
- $ I=2 \int_0^{\pi / 2} \log \cos x d x \cdot-(1) \int_0^\pi f(x) d x $ - $ I=2 \int_0^{\pi / 2} f(\log \cos (\frac{\pi}{2}-x)) d x $ - $ I=2 \int_0^{\pi / 2} \log \sin x d x-2 $ - (1) + (2) - $ 2 I =2 \int_0^{\pi / 2}(\log \sin x+\log \cos x) d x $ - $ I =\int_0^{\pi / 2} \log \left(\frac{2 \sin x \cos x}{2}\right) d x $
###
Definite Integral L-2
###
Solution
- $ I =\int_0^{\pi / 2} \log \frac{\sin 2 x}{1} d x-\int_0^{\pi / 2} \log 2 d x $ - 2 x=k - $ I=\int_0^\pi \log \sin t\left(\frac{1}{2} d t\right)-\frac{\pi}{2} \log 2 $ - $ =\frac{1}{2} \int_0^\pi \log \sin t d t-\frac{\pi}{2} \log 2 $
###
Definite Integral L-2
###
Solution
- $ \int_0^{2 a} f(x) d x=2 \int_0^a f(x) d x \quad f(2 a-x)=f(x) $ - $ I=\frac{1}{2} \times 2 \int_0^{\pi / 2} \log \sin (\pi-t) d t-\frac{\pi}{2} \log 2 $ - $ I=\int_0^{\pi / 2} \log \sin t d t-\frac{\pi}{2} \operatorname{log} $
###
Definite Integral L-2
###
Problem-9
- $ I =\int_0^1 x(1-x)^n d x . \quad \int_0^a f(x) d x $ - $ I =\int_0^1(1-x)(1-(1-x))^n d x=\int_0^a f(a-x) d x $ - $ =\int_0^1(1-x) x^n d x=\int_0^1 x^n-x^{n+1} d x $ - $ =\frac{x^{n+1}}{n+1}-\left.\frac{x^{n+2}}{n+2}\right|_0 ^1 $ - $ =\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{(n+1)(n+2)} $
###
Definite Integral L-2
###
Problem-10
- $ I =\int_0^1 x(1-x)^n d x . \quad \int_0^a f(x) d x $ - $ I =\int_0^1(1-x)(1-(1-x))^n d x=\int_0^a f(a-x) d x $ - $ =\int_0^1(1-x) x^n d x=\int_0^1 x^n-x^{n+1} d x $ - $ =\frac{x^{n+1}}{n+1}-\left.\frac{x^{n+2}}{n+2}\right|_0 ^1 $ - $ =\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{(n+1)(n+2)} $
###
Definite Integral L-2
###
Solution
- $ I =\int_0^\pi \frac{xd x}{1+\sin x} =\int_0^\pi \frac{\pi-x}{1+\sin(\pi-x)} d x $ - $ [{\int_0^a f(x) d x}] = [{\int_0^a f(a-x) dx }] $ - $ =\int_0^\pi \frac{(\pi-x) d x}{1+\sin x} ,\quad 2 I=\int_0^\pi \frac{\pi d x}{1+\sin x} $ - $ 2 I=\pi \int_0^\pi \frac{d x}{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^2}=\pi \int_0^\pi \frac{\sec ^2 \frac{x}{2} d x}{\left(1+\tan \frac{x}{2}\right)^2} $ - Let $\tan \frac{x}{2}=t \frac{1}{2} \sec ^2 \frac{x}{2} d x=d t \quad{2 I=2 \pi} $ - $2 I=\pi \int_0^{\infty} \frac{2 d t}{(1+t)^2}=\left.\pi \frac{(-2)}{1+t}\right|_0 ^{\infty}=-2 \pi(0-1)$
Definite Integral L-2
Thank you